Show that the set W = {(a, b, 0) : a, b ∈ F} is a subspace of V3(F).
Let us show that the set W={(a,b,0):a,b∈F}W = \{(a, b, 0) : a, b ∈ F\}W={(a,b,0):a,b∈F} is a subspace of V3(F).V_3(F).V3(F).
Let (a,b,0),(c,d,0)∈W.(a, b, 0),(c, d, 0)\in W.(a,b,0),(c,d,0)∈W.
Then (a,b,0)+(c,d,0)=(a+c,b+d,0)∈W.(a, b, 0)+(c, d, 0)=(a+c,b+d,0)\in W.(a,b,0)+(c,d,0)=(a+c,b+d,0)∈W.
If f∈F,f\in F,f∈F, then f⋅(a,b,0)=(fa,fb,0)∈W.f\cdot(a,b,0)=(fa,fb,0)\in W.f⋅(a,b,0)=(fa,fb,0)∈W.
We conclude that W={(a,b,0):a,b∈F}W = \{(a, b, 0) : a, b ∈ F\}W={(a,b,0):a,b∈F} is a subspace of V3(F).V_3(F).V3(F).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments