Question #285333

13. Suppose T, S : R^2\to R^2 are linear defined by T(u, v) =(3u + v, u + 2v) and S(x, y) =(2x - y, x + y). Also the matrices of T and S with respect to the standard bases of R^2 and R^2 are given as

M(T) =[3112]\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} and M(S) =[2111]\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}Then M(TS) =

(i)[1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

(ii)[3115]\begin{bmatrix} 3 & 1 \\ 1 & 5 \end{bmatrix}

(iii)[3141]\begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix}

(iv) None

14. Suppose T : R^2\to R^2 is linear defined by T(x, y) = (y, x). Then the eigenvalues of T is...

(i) 1 and - 1

(ii) 0 and 2

(iii) Does not exist

(iv) None


1
Expert's answer
2022-01-09T13:32:59-0500

13)


M(TS)=[3112][2111]=[7241]M(TS)=\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}\begin{bmatrix} 2 & -1\\ 1 & 1 \end{bmatrix}=\begin{bmatrix} 7 & -2 \\ 4 & 1 \end{bmatrix}


Correct option: None


14)


T(x,y)=(y,x)T(x,y)=(y,x)


    T(x,y)=λ(x,y)\implies\>T(x,y)=\lambda(x,y)

λ(x,y)=(y,x)\therefore\>\lambda(x,y)=(y,x)


λx=y........(i)\lambda\>x=y........(i)

λy=x........(ii)\lambda\>y=x........(ii)




Substituting (ii)(ii) in (i)(i)


λ(λy)=y\lambda(\lambda\>y)=y

λ2=1\lambda^2=1

λ=+1\lambda=^+_-1


λ=1or1\therefore\lambda=1\>or\>-1









Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS