8. Let W be the subspace of R^5 defined by W={x base 1,x base 2,x base 3,
x base 4 ,x base 5) "\\isin" R^5: x base 1 = 3x base 2 and x base 3 =7x base 4}. Then the basis of W is
(i) (3,1,0,0,1), (3,1,3,0,0), (3,1,0,0,1)
(ii) (3,1,0,1,1), (0,0,3,0,1), (0,0,1,3,1)
(iii) (3,1,1,0,1), (0,1,1,0,3), (0,0,1,0,1)
9. The basis of a solution space of given homogeneous linear system
X base 1 + x base 2 - x base 3 =0 X base 1 + x base 2 - x base 3 =0 X base 1 - x base 3 =0
-X base 1 + x base 3 =0 "\\implies"X base 2 =0 =0 "\\implies" X base 2 =0
-2X base 1 - x base 2 + 2x base 3 =0 -2X base 1 - x base 2 + 2x base 3 =0 - 2X base 1 + 2x base 3 =0
is
(i) {(1, 0, 1)}
(ii) {(1, 0, 1), (0, 1, 0)}
(iii) {(1, 1, -1), (-1, 0, 1), (-2, -1, 2)}
(iv) None
10. For a given matrix A "\\begin{bmatrix}\n 1 & 0 & 2 & - 3 \\\\\n 2 & 0 & 4 & - 6 \\\\\n - 3 & 0 & - 6 & 9\n\\end{bmatrix}". Which of the following is true
(i) rank (A) =3, nullity (A) =1
(ii) rank (A) =2, nullity (A) =2
(iii) rank (A) =1, nullity (A) =3
(iv) None
8.
"x_1=3x_2" and "x_3=7x_4"
"\\begin{pmatrix}\n 3x_2 \\\\\n x_2\\\\\n7x_4\\\\\nx_4\\\\\nx_5\n\\end{pmatrix}=x_2\\begin{pmatrix}\n 3 \\\\\n 1 \\\\\n0\\\\\n0\\\\\n0\n\\end{pmatrix}+x_4\\begin{pmatrix}\n 0\\\\\n 0 \\\\\n7\\\\\n1\\\\\n0\n\\end{pmatrix}+x_5\\begin{pmatrix}\n 0 \\\\\n 0\\\\\n0\\\\\n0\\\\\n1\n\\end{pmatrix}"
Basis of W is "(3,1,0,0,0),(0,0,7,1,0),(0,0,0,0,1)"
9.
"x_1+x_2-x_3=0.....(i)\\\\\nx_1-x_3=0......(ii)\\\\\n-2x_1-x_2+2x_3=0....(iii)\\\\\n-2x_1+2x_3=0....(iv)"
"-2(ii)=(iv)," therefore ignoring "(iv)"
"\\begin{pmatrix}\n 1&&1&&-1 \\\\\n 1&&0&&-1\\\\\n-2&&-1&&2\n\\end{pmatrix}\\begin{pmatrix}\n x_1 \\\\\n x_2 \\\\\nx_3\n\\end{pmatrix}=\\begin{pmatrix}\n 0 \\\\\n 0 \\\\\n0\n\\end{pmatrix}"
"\\implies\\begin{pmatrix}\n 1&&0&&-1 \\\\\n 0&&1&&0\\\\\n0&&0&&0\n\\end{pmatrix}\\begin{pmatrix}\n x_1 \\\\\n x_2\\\\\nx_3\n\\end{pmatrix}=\\begin{pmatrix}\n 0 \\\\\n 0 \\\\\n0\n\\end{pmatrix}"
"x_1=x_3\\\\\nx_2=0"
"\\begin{pmatrix}\n x_1 \\\\\n 0 \\\\\nx_1\n\\end{pmatrix}=x_1\\begin{pmatrix}\n 1 \\\\\n 0\\\\\n1\n\\end{pmatrix}"
Basis is "[1,0,1]"
10.
"\\begin{pmatrix}\n 1&&0&&2&& -3 \\\\\n 2&&0&&4&&-6 \\\\\n-3&&0&&-6&&9\n\\end{pmatrix}"
"\\frac{1}{2}R_2\\to\\>R_2"
"\\frac{-1}{3}R_3\\to\\>R_3"
"\\begin{pmatrix}\n 1&&0&& 2&&-3 \\\\\n 1&&0&&2& & -3\\\\\n1&&0&&2&&-3\n\\end{pmatrix}"
"R_2-R_1\\to\\>R_2\\\\\nR_3-R_1\\to\\>R_3"
"\\begin{pmatrix}\n 1&&0&&2&&-3 \\\\\n 0&&0& & 0&&0\\\\\n0&&0&&0&&0\n\\end{pmatrix}"
Rank "=1"
Nullity "=3"
Comments
Leave a comment