1.
"A=\\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 1\/\\sqrt 2\\\\\n0&1\/\\sqrt 2\n\\end{pmatrix},b=\\begin{pmatrix}\n 2 \\\\\n 4\\\\\n6\n\\end{pmatrix}"
Then u is the orthogonal projection of b onto the subspace spanned by the column of A and it is given by the formula:
"u=A(A^TA)^{-1}A^Tb"
then:
"A^Tb=\\begin{pmatrix}\n 1 & 0&0 \\\\\n 0 & 1\/\\sqrt 2& 1\/\\sqrt 2\\\\\n\\end{pmatrix}\\begin{pmatrix}\n 2 \\\\\n 4\\\\\n6\n\\end{pmatrix}=\\begin{pmatrix}\n 2 \\\\\n 10\/\\sqrt 2\n\\end{pmatrix}"
"A^TA=\\begin{pmatrix}\n 1 & 0&0 \\\\\n 0 & 1\/\\sqrt 2& 1\/\\sqrt 2\\\\\n\\end{pmatrix}\\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 1\/\\sqrt 2\\\\\n0&1\/\\sqrt 2\n\\end{pmatrix}=\\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{pmatrix}"
"(A^TA)^{-1}=\\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{pmatrix}"
"(A^TA)^{-1}A^Tb=\\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{pmatrix}\\begin{pmatrix}\n 2 \\\\\n 10\/\\sqrt 2\n\\end{pmatrix}=\\begin{pmatrix}\n 2 \\\\\n 10\/\\sqrt 2\n\\end{pmatrix}"
"u=\\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 1\/\\sqrt 2\\\\\n0&1\/\\sqrt 2\n\\end{pmatrix}\\begin{pmatrix}\n 2 \\\\\n 10\/\\sqrt 2\n\\end{pmatrix}=\\begin{pmatrix}\n 2 \\\\\n 5\\\\\n5\n\\end{pmatrix}"
2.
"x^2-4\\ge 0 \\implies |x|\\ge 2"
then image of S:
"f(x)\\le 2(-2)-1=-5" and
"f(x)\\ge 2\\cdot 2-1=3"
3.
for ker(T):
"U+V=0"
"U+2U=0"
so,
"ker(T)=(0,0)"
4.
by the rank-nullity theorem:
"6=dim(Ker(T))+dim(Im(T))"
So, dim range T= 6-dim(Ker(T))=6-2=4
Comments
Leave a comment