Let us determine if the following sets are linearly dependent, or independent.
(i) { 1 , sin ( x ) , cos ( x ) } \{1,\sin(x),\cos(x)\} { 1 , sin ( x ) , cos ( x )}
Since the Wronskian
W ( 1 , sin ( x ) , cos ( x ) ) = ∣ 1 sin ( x ) cos ( x ) 0 cos ( x ) − sin ( x ) 0 − sin ( x ) − cos ( x ) ∣ = ∣ cos ( x ) − sin ( x ) − sin ( x ) − cos ( x ) ∣ = − cos 2 ( x ) − sin 2 ( x ) = − 1 ≠ 0 , W(1,\sin(x),\cos(x))=\begin{vmatrix}
1 & \sin(x) & \cos(x)\\
0 & \cos(x) & -\sin(x)\\
0 & -\sin(x) & -\cos(x)
\end{vmatrix}
=
\begin{vmatrix}
\cos(x) & -\sin(x)\\
-\sin(x) & -\cos(x)
\end{vmatrix}
\\=-\cos^2(x)-\sin^2(x)=-1\ne 0, W ( 1 , sin ( x ) , cos ( x )) = ∣ ∣ 1 0 0 sin ( x ) cos ( x ) − sin ( x ) cos ( x ) − sin ( x ) − cos ( x ) ∣ ∣ = ∣ ∣ cos ( x ) − sin ( x ) − sin ( x ) − cos ( x ) ∣ ∣ = − cos 2 ( x ) − sin 2 ( x ) = − 1 = 0 , ∣
we conclude that the set { 1 , sin ( x ) , cos ( x ) } \{1,\sin(x),\cos(x)\} { 1 , sin ( x ) , cos ( x )} is linearly independent.
(ii) { sin 2 ( x ) , cos ( 2 x ) , cos 2 ( x ) } \{\sin^2(x),\cos(2x),\cos^2(x)\} { sin 2 ( x ) , cos ( 2 x ) , cos 2 ( x )}
Taking into account that cos ( 2 x ) = 1 ⋅ cos 2 ( x ) − 1 ⋅ sin 2 ( x ) , \cos(2x)=1\cdot\cos^2(x)-1\cdot\sin^2(x), cos ( 2 x ) = 1 ⋅ cos 2 ( x ) − 1 ⋅ sin 2 ( x ) , we conclude that this set is linearly dependent.
Comments