(i):
The coordinates of p(x)∈ \in ∈ P2 with respect to the basis B is [ p ( x ) ] B = [ 1 − 1 3 ] [p(x)]_B=\begin{bmatrix} 1 \\-1\\3\end{bmatrix} [ p ( x ) ] B = ⎣ ⎡ 1 − 1 3 ⎦ ⎤
∴ p ( x ) = 1 ( 1 − x ) − 1 ( 2 + x ) + 3 ( 3 − x + x 2 ) = ( 1 − 2 + 9 ) . 1 + ( − 1 − 1 − 3 ) x + 3. x 2 = 8 − 5 x + 3 x 2 \therefore p(x)=1(1-x)-1(2+x)+3(3-x+x^2)
\\=(1-2+9).1+(-1-1-3)x+3.x^2
\\=8-5x+3x^2 ∴ p ( x ) = 1 ( 1 − x ) − 1 ( 2 + x ) + 3 ( 3 − x + x 2 ) = ( 1 − 2 + 9 ) .1 + ( − 1 − 1 − 3 ) x + 3. x 2 = 8 − 5 x + 3 x 2
(ii):
Let 1 − x = a . 1 + b ( 2 + x ) + c ( 1 + x − x 2 ) 1-x=a.1+b(2+x)+c(1+x-x^2) 1 − x = a .1 + b ( 2 + x ) + c ( 1 + x − x 2 )
⇒ 1 − x = ( a + 2 b + c ) + ( b + c ) x − c x 2 \Rightarrow 1-x=(a+2b+c)+(b+c)x-cx^2 ⇒ 1 − x = ( a + 2 b + c ) + ( b + c ) x − c x 2
On comparing, we get,
a + 2 b + c = 1 b + c = − 1 − c = 0 ⇒ c = 0 , b = − 1 , a = 3 a+2b+c=1
\\b+c=-1
\\-c=0
\\\Rightarrow c=0,b=-1,a=3 a + 2 b + c = 1 b + c = − 1 − c = 0 ⇒ c = 0 , b = − 1 , a = 3
So, 1 − x = 3 ( 1 ) − 1 ( 2 + x ) + 0. ( 1 + x − x 2 ) . . . ( i ) 1-x=3(1)-1(2+x)+0.(1+x-x^2)\ ...(i) 1 − x = 3 ( 1 ) − 1 ( 2 + x ) + 0. ( 1 + x − x 2 ) ... ( i )
Also, 2 + x = 0 ( 1 ) + 1 ( 2 + x ) + 0. ( 1 + x − x 2 ) . . . ( i i ) 2+x=0(1)+1(2+x)+0.(1+x-x^2)\ ...(ii) 2 + x = 0 ( 1 ) + 1 ( 2 + x ) + 0. ( 1 + x − x 2 ) ... ( ii )
Also, 3 − x + x 2 = 4 ( 1 ) + 0 ( 2 + x ) + ( − 1 ) . ( 1 + x − x 2 ) . . . ( i i i ) 3-x+x^2=4(1)+0(2+x)+(-1).(1+x-x^2)\ ...(iii) 3 − x + x 2 = 4 ( 1 ) + 0 ( 2 + x ) + ( − 1 ) . ( 1 + x − x 2 ) ... ( iii )
From (i), (ii), (iii), we get the transition matrix from B to C as:
C M B = [ 3 0 4 − 1 1 0 0 0 − 1 ] _CM_B=\begin{bmatrix} 3&0&4 \\-1&1&0\\0&0&-1\end{bmatrix} C M B = ⎣ ⎡ 3 − 1 0 0 1 0 4 0 − 1 ⎦ ⎤
(iii):
From part (i), we have p ( x ) = 8 − 5 x + 3 x 2 p(x)=8-5x+3x^2 p ( x ) = 8 − 5 x + 3 x 2
Let 8 − 5 x + 3 x 2 = p ( 1 ) + q ( 2 + x ) + r ( 1 + x − x 2 ) 8-5x+3x^2=p(1)+q(2+x)+r(1+x-x^2) 8 − 5 x + 3 x 2 = p ( 1 ) + q ( 2 + x ) + r ( 1 + x − x 2 )
⇒ 8 − 5 x + 3 x 2 = ( p + 2 q + r ) + ( q + r ) x − r x 2 \Rightarrow 8-5x+3x^2=(p+2q+r)+(q+r)x-rx^2 ⇒ 8 − 5 x + 3 x 2 = ( p + 2 q + r ) + ( q + r ) x − r x 2
On comparing, we get,
p + 2 q + r = 8 q + r = − 5 − r = 3 ⇒ r = − 3 , q = − 2 , p = 15 p+2q+r=8
\\q+r=-5
\\-r=3
\\\Rightarrow r=-3,q=-2,p=15 p + 2 q + r = 8 q + r = − 5 − r = 3 ⇒ r = − 3 , q = − 2 , p = 15
So, we get, p ( x ) = 15 ( 1 ) − 2 ( 2 + x ) − 3 ( 1 + x − x 2 ) p(x)=15(1)-2(2+x)-3(1+x-x^2) p ( x ) = 15 ( 1 ) − 2 ( 2 + x ) − 3 ( 1 + x − x 2 )
So, the coordinates of p(x) w.r.t basis C is:
[ p ( x ) ] C = [ 15 − 2 − 3 ] [p(x)]_C=\begin{bmatrix} 15 \\-2\\-3\end{bmatrix} [ p ( x ) ] C = ⎣ ⎡ 15 − 2 − 3 ⎦ ⎤
Comments