Find eigen values and associated eigen vectors of the matrix
A=[ 1 −3 3
−3 −5 3
6 −6 4 ] in the field R. Also find an invertible matrix p such that p−1 Ap is diagonal.
The characteristic equation
"\\det(A-\\lambda I)=0""(1-\\lambda)(-5-\\lambda)(4-\\lambda)-54+54"
"-18(-5-\\lambda)+18(1-\\lambda)-9(4-\\lambda)=0"
"-\\lambda^3+30\\lambda+52=0"
"-\\lambda^2(\\lambda+2)+2\\lambda(\\lambda+2)+26(\\lambda+2)=0"
"\\lambda_1=-2"
"\\lambda^2-2\\lambda-26=0"
"(\\lambda-1)^2=27"
"\\lambda_2=1-3\\sqrt{3}, \\lambda_3=1+3\\sqrt{3}"
"\\lambda_1=-2,\\lambda_2=1-3\\sqrt{3}, \\lambda_3=1+3\\sqrt{3}"
These are eigenvalues.
"\\lambda=-2"
"R_1=R_1\/3"
"R_2=R_2+3R_1"
"R_3=R_3-6R_1"
"R_2=R_2\/(-6)"
"R_1=R_1+R_2"
If we take "v_3=t," then "v_1=0, v_2=t, v_3=t."
Thus the eigenvector is
"\\bold v=\\begin{bmatrix}\n 0 \\\\\n 1 \\\\\n1\n\\end{bmatrix}"
"\\lambda=1-3\\sqrt{3}"
"\\begin{bmatrix}\n 1-\\lambda & -3 & 3 \\\\\n -3 & -5-\\lambda & 3 \\\\\n 6 & -6 & 4-\\lambda\n\\end{bmatrix}""=\\begin{bmatrix}\n 3\\sqrt{3} & -3 & 3 \\\\\n -3 & -6+3\\sqrt{3} & 3 \\\\\n 6 & -6 & 3+3\\sqrt{3}\n\\end{bmatrix}"
"R_1=\\sqrt{3}R_1\/9"
"\\begin{bmatrix}\n 1 & -\\sqrt{3}\/3 & \\sqrt{3}\/3 \\\\\n -3 & -6+3\\sqrt{3} & 3 \\\\\n 6 & -6 & 3+3\\sqrt{3}\n\\end{bmatrix}""R_2=R_2+3R_1"
"\\begin{bmatrix}\n 1 & -\\sqrt{3}\/3 & \\sqrt{3}\/3 \\\\\n 0 & -6+2\\sqrt{3} & 3+\\sqrt{3} \\\\\n 6 & -6 & 3+3\\sqrt{3}\n\\end{bmatrix}""R_3=R_3-6R_1"
"\\begin{bmatrix}\n 1 & -\\sqrt{3}\/3 & \\sqrt{3}\/3 \\\\\n 0 & -6+2\\sqrt{3} & 3+\\sqrt{3} \\\\\n 0 & -6+2\\sqrt{3} & 3+\\sqrt{3}\n\\end{bmatrix}""R_2=R_2\/(-6+2\\sqrt{3})"
"\\begin{bmatrix}\n 1 & -\\sqrt{3}\/3 & \\sqrt{3}\/3 \\\\\n 0 & 1 & -1-\\sqrt{3}\/2 \\\\\n 0 & -6+2\\sqrt{3} & 3+\\sqrt{3}\n\\end{bmatrix}""R_1=R_1+R_2\/\\sqrt{3}"
"\\begin{bmatrix}\n 1 & 0 & -1\/2 \\\\\n 0 & 1 & -1-\\sqrt{3}\/2 \\\\\n 0 & -6+2\\sqrt{3} & 3+\\sqrt{3}\n\\end{bmatrix}""R_3=R_3+(6-2\\sqrt{3})R_2"
If we take "u_3=t," then "u_1=t\/2, u_2=(2+\\sqrt{3})t\/2, u_3=t."
Thus the eigenvector is
"\\bold u=\\begin{bmatrix}\n 1\/2 \\\\\n (2+\\sqrt{3})\/2 \\\\\n1\n\\end{bmatrix}""\\lambda=1+3\\sqrt{3}"
"\\begin{bmatrix}\n 1-\\lambda & -3 & 3 \\\\\n -3 & -5-\\lambda & 3 \\\\\n 6 & -6 & 4-\\lambda\n\\end{bmatrix}""=\\begin{bmatrix}\n -3\\sqrt{3} & -3 & 3 \\\\\n -3 & -6-3\\sqrt{3} & 3 \\\\\n 6 & -6 & 3-3\\sqrt{3}\n\\end{bmatrix}"
"R_1=-\\sqrt{3}R_1\/9"
"\\begin{bmatrix}\n 1 & \\sqrt{3}\/3 & -\\sqrt{3}\/3 \\\\\n -3 & -6-3\\sqrt{3} & 3 \\\\\n 6 & -6 & 3-3\\sqrt{3}\n\\end{bmatrix}""R_2=R_2+3R_1"
"\\begin{bmatrix}\n 1 & \\sqrt{3}\/3 & -\\sqrt{3}\/3 \\\\\n 0 & -6-2\\sqrt{3} & 3-\\sqrt{3} \\\\\n 6 & -6 & 3-3\\sqrt{3}\n\\end{bmatrix}""R_3=R_3-6R_1"
"\\begin{bmatrix}\n 1 & \\sqrt{3}\/3 & -\\sqrt{3}\/3 \\\\\n 0 & -6-2\\sqrt{3} & 3-\\sqrt{3} \\\\\n 0 & -6-2\\sqrt{3} & 3-\\sqrt{3}\n\\end{bmatrix}""R_2=R_2\/(-6-2\\sqrt{3})"
"\\begin{bmatrix}\n 1 & \\sqrt{3}\/3 & -\\sqrt{3}\/3 \\\\\n 0 & 1 & -1+\\sqrt{3} \/2\\\\\n 0 & -6-2\\sqrt{3} & 3-\\sqrt{3}\n\\end{bmatrix}""R_1=R_1-R_2\/\\sqrt{3}"
"\\begin{bmatrix}\n 1 & 0 & -1\/2 \\\\\n 0 & 1 & -1+\\sqrt{3} \/2\\\\\n 0 & -6-2\\sqrt{3} & 3-\\sqrt{3}\n\\end{bmatrix}""R_3=R_3+(6+2\\sqrt{3})R_2"
"\\begin{bmatrix}\n 1 & 0 & -1\/2 \\\\\n 0 & 1 & -1+\\sqrt{3} \/2\\\\\n 0 & 0 & 0\n\\end{bmatrix}"If we take "w_3=t," then "w_1=t\/2, w_2=(2-\\sqrt{3})t\/2, w_3=t."
Thus the eigenvector is
"\\bold w=\\begin{bmatrix}\n 1\/2 \\\\\n (2-\\sqrt{3})\/2 \\\\\n1\n\\end{bmatrix}"Form the matrix "P," whose column "i" is eigenvector no. "i:"
Form the matrix "D" whose element at row "i," column "i" is eigenvalue no. "i:"
The matrices "P" and "D" are such that the initial matrix
Comments
Leave a comment