Let W⊆R
5
W⊆R5 be the set of solutions of the linear homogeneous system given by
x1−x2+4x3−x4−x5=0
−x1+x2−x3+2x4+x5=0
x3−3x4+x5=0
Accordingly,
(i) show that W⊆R5 is a subspace,
(ii) find a basis for W
(iii) dim(W)=?
Consider the given homogenous system of linear equations.
"\\begin{aligned}\n\nx_{1}-x_{2}+4 x_{3}-x_{4}-x_{5} &=0 \\\\\n\n-x_{1}+x_{2}-x_{3}+2 x_{4}+x_{5} &=0 \\\\\n\nx_{3}-3 x_{4}+x_{5} &=0\n\n\\end{aligned}"
The above system of equations can be expressed as,
"\\left[\\begin{array}{ccccc}\n\n1 & -1 & 4 & -1 & -1 \\\\\n\n-1 & 1 & -1 & 2 & 1 \\\\\n\n0 & 0 & 1 & -3 & 1\n\n\\end{array}\\right]\\left[\\begin{array}{l}\n\nx_{2} \\\\\n\nx_{2} \\\\\n\nx_{3} \\\\\n\nx_{4} \\\\\n\nx_{5}\n\n\\end{array}\\right]=\\left[\\begin{array}{l}\n\n0 \\\\\n\n0 \\\\\n\n0 \\\\\n\n0 \\\\\n\n0\n\n\\end{array}\\right]\n...(1)"
Let W be the set of solutions of the above linear homogeneous system of equations.
"[i] W \\subseteq \\mathbb{R}^{5}" is a subspace.
clearly "\\overline{0}=\\left[\\begin{array}{l}0 \\\\ 0 \\\\ 0 \\\\ 0 \\\\ 0\\end{array}\\right] \\in W."
Now, let "x_{1}, x_{2} \\in \\mathbb{N}."
"\\Rightarrow A X_{2}=0 \\text { and } A X_{2}=0"
Consider,
"\\begin{gathered}\n\nA\\left(X_{1}+X_{2}\\right)=A X_{1}+A X_{2}=0+0=0 \\\\\n\n\\therefore A\\left(X_{1}+X_{2}\\right)=0 \\Rightarrow X_{1}+X_{2} \\in W .\n\n\\end{gathered}"
Thus. vector addition is satisfied.
Further. Let "\\lambda \\in \\mathbb{R}" and "x \\in \\mathbb{N}."
Now.
"\\Rightarrow \\quad A x=0 \\text {. }"
"A(\\lambda x)=\\lambda(A x)=\\lambda(0)=0"
Thus, "A(\\lambda x)=0 \\Rightarrow \\lambda x \\in W."
therefore scalar multiplication is satisfied.
Therefore, "\\mid N \\subseteq \\mathbb{R}^{5}" is a subspace.
ii) From (1) we have,
"\\left[\\begin{array}{ccccc}\n\n1 & -1 & 4 & -1 & -1 \\\\\n\n-1 & 1 & -1 & 2 & 1 \\\\\n\n0 & 0 & 1 & -3 & 1\n\n\\end{array}\\right]\\left[\\begin{array}{l}\n\nx_{2} \\\\\n\nx_{2} \\\\\n\nx_{3} \\\\\n\nx_{4} \\\\\n\nx_{5}\n\n\\end{array}\\right]=\\left[\\begin{array}{l}\n\n0 \\\\\n\n0 \\\\\n\n0 \\\\\n\n0 \\\\\n\n0\n\n\\end{array}\\right]"
Apply, "R_{2} \\rightarrow R_{2}+R_{1}."
"\\left[\\begin{array}{ccccc}\n\n1 & -1 & 4 & -1 & -1 \\\\\n\n0 & 0 & 3 & 1 & 0 \\\\\n\n0 & 0 & 1 & -3 & 1\n\n\\end{array}\\right]\\left[\\begin{array}{l}\n\nx_{1} \\\\\n\nx_{2} \\\\\n\nx_{3} \\\\\n\nx_{4} \\\\\n\nx_{5}\n\n\\end{array}\\right]=\\left[\\begin{array}{l}\n\n0 \\\\\n\n0 \\\\\n\n0 \\\\\n\n0 \\\\\n\n0\n\n\\end{array}\\right]"
"\\left[\\begin{array}{ccccc}\n\nR_{3} & \\rightarrow & 3 R_{3}-R_{2} & \\\\\n\n1 & -1 & 4 & -1 & -1 \\\\\n\n0 & 0 & 3 & 1 & 0 \\\\\n\n0 & 0 & 0 & -8 & 3\n\n\\end{array}\\right]\\left[\\begin{array}{l}\n\nx_{2} \\\\\n\nx_{2} \\\\\n\nx_{3} \\\\\n\nx_{4} \\\\\n\nx_{5}\n\n\\end{array}\\right]=\\left[\\begin{array}{l}\n\n0 \\\\\n\n0 \\\\\n\n0 \\\\\n\n0 \\\\\n\n0\n\n\\end{array}\\right]"
"\\begin{array}{r}\n\n\\Rightarrow x_{1}-x_{2}+4 x_{3}-x_{4}-x_{5}=0 \\\\\n\n3 x_{3}+x_{4}=0 \\\\\n\n-8 x_{4}+3 x_{5}=0\n\n\\end{array}"
No. of equations =3
No. of variables =5.
Therefore, No. of free variables =5-3=2.
Let us treat, "x_{2}" and "x_{4}" as free variables.
Thus. we have,
"x_{5}=\\frac{8}{3} x_{4} \\quad x_{3}=\\frac{-1}{3} x_{4}"
And,
"\\begin{aligned}\n\nx_{1} &=x_{2}-4 x_{3}+x_{4}+x_{5} \\\\\n\n&=x_{2}+\\frac{4}{3} x_{4}+x_{4}+\\frac{8}{3} x_{4} \\\\\n\nx_{1} &=x_{2}+5 x_{4}\n\n\\end{aligned}"
"\\begin{aligned} X=\\left[\\begin{array}{l}x_{1} \\\\ x_{2} \\\\ x_{3} \\\\ x_{4} \\\\ x_{5}\\end{array}\\right] &=\\left[\\begin{array}{c}x_{2}+5 x_{4} \\\\ x_{2} \\\\ -1 \/ 3 x_{4} \\\\ x_{4} \\\\ 8 \/ 3 x_{4}\\end{array}\\right]=\\left[\\begin{array}{l}x_{2} \\\\ x_{2} \\\\ 0 \\\\ 0 \\\\ 0\\end{array}\\right]+\\left[\\begin{array}{c}5 x_{4} \\\\ 0 \\\\ -1 \/ 3 x_{4} \\\\ x_{4} \\\\ 8 \/ 3 x_{4}\\end{array}\\right]=x_{2}\\left[\\begin{array}{l}1 \\\\ 1 \\\\ 0 \\\\ 0 \\\\ 0\\end{array}\\right]+x_{4}\\left[\\begin{array}{c}5 \\\\ 0 \\\\ -1 \/ 3 \\\\ 1 \\\\ 8 \/ 3\\end{array}\\right] \\\\ & \\therefore\\left[\\begin{array}{c}x_{1} \\\\ x_{2} \\\\ x_{3} \\\\ x_{4} \\\\ x_{5}\\end{array}\\right]=x_{2}\\left[\\begin{array}{c}1 \\\\ 1 \\\\ 0 \\\\ 0 \\\\ 0\\end{array}\\right]+x_{4}\\left[\\begin{array}{c}15 \\\\ 0 \\\\ -1 \\\\ 3 \\\\ 8\\end{array}\\right] \\text { where } x_{2}, x_{4} \\in \\mathbb{R} \\end{aligned}"
Thus the solution space W is generated by two linearly independent vectors, namely
"\\left[\\begin{array}{l}\n\n1 \\\\\n\n1 \\\\\n\n0 \\\\\n\n0 \\\\\n\n0\n\n\\end{array}\\right] \\text { and }\\left[\\begin{array}{c}\n\n15 \\\\\n\n0 \\\\\n\n-1 \\\\\n\n3 \\\\\n\n8\n\n\\end{array}\\right]"
Therefore,
Basis for W is,
"B=\\left\\{\\left[\\begin{array}{c}1 \\\\ 1 \\\\ 0 \\\\ 0 \\\\ 0\\end{array}\\right],\\left[\\begin{array}{c}15 \\\\ 0 \\\\ -1 \\\\ 3 \\\\ 8\\end{array}\\right]\\right\\}"
"\\underline{or} \\quad B=\\{(1,1,0,0,0),(15,0,-1,3,8)\\} \\subseteq \\mathbb{R}^{5}"
(iii) Thus, "\\operatorname{dim}(W)=2."
Comments
Leave a comment