1.
"A=\\begin{pmatrix}\n 1 & 1&-1&1 \\\\\n 2 & 1&1&4\\\\\n 1 & 0&0&1\\\\\n\n\\end{pmatrix}"
for null space: "Ax=0"
so, we have:
"x_1=-x_4"
"x_2=x_3"
"-2x_1+2x_2=0\\implies x_1=x_2"
solution:
"x=\\begin{pmatrix}\n x_1 \\\\\n x_2\\\\\nx_3\\\\\nx_4\n\\end{pmatrix}=\\begin{pmatrix}\n x_1 \\\\\n x_1\\\\\nx_1\\\\\n-x_1\n\\end{pmatrix}=x_1\\begin{pmatrix}\n 1 \\\\\n 1\\\\\n1\\\\\n-1\n\\end{pmatrix}"
then basis for the null space:
"\\begin{pmatrix}\n 1 \\\\\n 1\\\\\n1\\\\\n-1\n\\end{pmatrix}"
2.
"\\begin{pmatrix}\n 1 &1&0 \\\\\n 1 &-1&0\\\\\n1 &0&2\n\\end{pmatrix}\\begin{pmatrix}\n x \\\\\n y\\\\\nz\n\\end{pmatrix}=\\begin{pmatrix}\n x+y \\\\\n x-y\\\\\nx+2z\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1 &1&0 \\\\\n 1 &-1&0\\\\\n1 &0&2\n\\end{pmatrix}\\to \\begin{pmatrix}\n 1 &1&0 \\\\\n 2 &0&0\\\\\n1 &0&2\n\\end{pmatrix}"
basis of range T:
"\\begin{pmatrix}\n 1 \\\\\n 2\\\\\n1\n\\end{pmatrix},\\begin{pmatrix}\n 1 \\\\\n 0\\\\\n0\n\\end{pmatrix},\\begin{pmatrix}\n 0 \\\\\n 0\\\\\n2\n\\end{pmatrix}"
3.
i)
Transforming matrix "T" ;
"\\begin{pmatrix}\n 2x \\\\\n x+y \\\\\nx-z\n\\end{pmatrix}" ="x\\begin{pmatrix}\n 2\\\\\n1\\\\ \n1\n\\end{pmatrix}" "+y\\begin{pmatrix}\n 0 \\\\\n 1\\\\ \n0\n\\end{pmatrix}" +"z\\begin{pmatrix}\n 0 \\\\\n 0\\\\\n-1\n\\end{pmatrix}"
"T=\\begin{pmatrix}\n 2& 0&0\\\\\n 1&1 & 0\\\\\n1&0&-1\n\\end{pmatrix}"
"T^*=T^T=\\begin{pmatrix}\n 2&1 & 1 \\\\\n 0&1& 0\\\\\n0&0&-1\n\\end{pmatrix}"
"\\begin{pmatrix}\n 2&1& 1\\\\\n 0&1 & 0\\\\\n0&0&-1\n\\end{pmatrix}\\begin{pmatrix}\n u \\\\\n v\\\\\nw\n\\end{pmatrix}=\\begin{pmatrix}\n 2u+v+w \\\\\n v \\\\\n-w\n\\end{pmatrix}"
Therefore the adjoint operator "T^*(u,v,w)"
"=(2u+v+w,v,-w)"
Comments
Leave a comment