Question #254212

suppose W is plane 3x +6y-4z=0. a basis for W is?



1
Expert's answer
2021-10-21T12:43:53-0400

Writing z in terms of x and y,


4z=3x6y-4z=-3x-6y

z=34x+32yz=\frac{3}{4}x+\frac{3}{2}y


Any vector basis,

(x,y,z)=(x,y,34x+32y)(x,y,z)=(x,y,\frac{3}{4}x+\frac{3}{2}y)

When x=1,y=0,z=34x=1,y=0,z=\frac{3}{4}

Setting x=0,y=1,z=32x=0,y=1,z=\frac{3}{2}

(x,y,34x+32y)(x,y,\frac{3}{4}x+\frac{3}{2}y)

=x(1,0,34)+y(0,1,32)=x (1,0,\frac{3}{4})+y(0,1,\frac{3}{2})


Basis is given by


{[10¾],[013/2]}\{\begin{bmatrix} 1\\ 0\\¾ \end{bmatrix},\begin{bmatrix} 0\\ 1\\3/2 \end{bmatrix}\}






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS