suppose W is plane 3x +6y-4z=0. a basis for W is?
Writing z in terms of x and y,
−4z=−3x−6y-4z=-3x-6y−4z=−3x−6y
z=34x+32yz=\frac{3}{4}x+\frac{3}{2}yz=43x+23y
Any vector basis,
(x,y,z)=(x,y,34x+32y)(x,y,z)=(x,y,\frac{3}{4}x+\frac{3}{2}y)(x,y,z)=(x,y,43x+23y)
When x=1,y=0,z=34x=1,y=0,z=\frac{3}{4}x=1,y=0,z=43
Setting x=0,y=1,z=32x=0,y=1,z=\frac{3}{2}x=0,y=1,z=23
(x,y,34x+32y)(x,y,\frac{3}{4}x+\frac{3}{2}y)(x,y,43x+23y)
=x(1,0,34)+y(0,1,32)=x (1,0,\frac{3}{4})+y(0,1,\frac{3}{2})=x(1,0,43)+y(0,1,23)
Basis is given by
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments