Answer to Question #226356 in Linear Algebra for Sarita bartwal

Question #226356
a. Find a unit vector in R^3 that is orthogonal to (1,2,1) and (1,-1,2).
b. If T: R^5 to R^3 is a linear transformation, then there is u
1
Expert's answer
2021-08-16T15:44:51-0400

The vector orthogonal to both (1, 2, 1) and (1, -1, 2) is the vector crossproduct between (1,2,1) and (1,-1,2)ijk121112=i2112j1112+k1211=5ij3kThe unit vector is=5ij3k52+(1)2+(3)2=5ij3k35\text{The vector orthogonal to both (1, 2, 1) and (1, -1, 2) is the vector cross} \\\text{product between (1,2,1) and (1,-1,2)} \\\begin{vmatrix} i & j & k\\ 1 & 2 & 1 \\ 1 & -1 & 2 \end{vmatrix} \\=i\begin{vmatrix} 2 & 1\\ -1 & 2 \end{vmatrix} -j\begin{vmatrix} 1 & 1\\ 1 & 2 \end{vmatrix} + k\begin{vmatrix} 1 & 2\\ 1 & -1 \end{vmatrix}=5i-j-3k \\\text{The unit vector is} \\=\frac{5i-j-3k}{\sqrt{5^2+(-1)^2+(-3)^2}}=\frac{5i-j-3k}{\sqrt{35}}


Question 2 isn't complete


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment