Question #226354
Given any n∈N, is possible to define a linear transformation whose kernel has dimension n.
True or false with full explanation
1
Expert's answer
2021-08-16T15:29:12-0400

Consider the map T:RnRn,T(x1,x2,...,xn)=(0,0,...,0)T:\R^n\to\R^n, T(x_1,x_2,...,x_n)=(0,0,...,0) for any (x1,x2,...,xn)Rn.(x_1,x_2,...,x_n)\in\R^n. Then

T(a(x1,x2,...,xn)+b(y1,y2,...,yn))=0==a0+b0=aT(x1,x2,...,xn)+bT(y1,y2,...,yn),T(a(x_1,x_2,...,x_n)+b(y_1,y_2,...,y_n))=0=\\=a\cdot 0+b\cdot 0=a\cdot T(x_1,x_2,...,x_n)+b\cdot T(y_1,y_2,...,y_n), and hence TT is a linear transformation. Its kernel is

ker(T)={(x1,x2,..,xn)Rn:T(x1,x2,..,xn)=(0,0,...,0)}=Rn.ker (T)=\{(x_1,x_2,..,x_n)\in\R^n:T(x_1,x_2,..,x_n)=(0,0,...,0)\}=R^n.

Since dim(Rn)=n,dim(\R^n)=n, we conclude for any nNn∈\N, is possible to define a linear transformation whose kernel has dimension nn .


Answer: true


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS