3(a) Let x= the amount of the first investment, y= the amount of the second investment, and z= the amount of the third investment. Then
x+y+z=8000
0.07x+0.08y+0.09z=317.50
0.07x=0.08y+5
x+y+z=80007x+8y+9z=317507x−8y=500
⎝⎛17718−8190800031750500⎠⎞ R2=R2−7R1
⎝⎛10711−81208000−24250500⎠⎞ R3=R3−7R1
⎝⎛10011−1512−78000−24250−55500⎠⎞ R1=R1−R2
⎝⎛10001−15−12−732250−24250−55500⎠⎞ R3=R3+15R2
⎝⎛100010−122332250−24250−419250⎠⎞ R3=R3/23
⎝⎛100010−12132250−24250−23419250⎠⎞ R1=R1+R3
⎝⎛10001002123322500−24250−23419250⎠⎞ R2=R2−2R3
⎝⎛1000100012332250023280750−23419250⎠⎞ Since we obtain z=−23419250<0, then the problem has no solution.
Suppose that an amount of Rs. 4,000 is distributed into three investments
x+y+z=40007x+8y+9z=317507x−8y=500
⎝⎛17718−8190400031750500⎠⎞ R2=R2−7R1
⎝⎛10711−812040003750500⎠⎞ R3=R3−7R1
⎝⎛10011−1512−740003750−27500⎠⎞ R1=R1−R2
⎝⎛10001−15−12−72503750−27500⎠⎞ R3=R3+15R2
⎝⎛100010−1223250375028750⎠⎞ R3=R3/23
⎝⎛100010−12125037501250⎠⎞ R1=R1+R3
⎝⎛100010021150037501250⎠⎞ R2=R2−2R3
⎝⎛100010001150012501250⎠⎞x=1500,y=1250,z=1250.
We have correct solution.
3(b) Let x=the size of the order (the number of dozen).
Total revenue is
R=R(x)={24xx(24−0.2(x−50))x≤50x≥50
R=R(x)={24x34x−0.2x2x≤50x≥50 For maximum R we have x=−2(−0.2)34=85>50
Check p=24−0.2(85−50)=17>0.
Order in 85 dozen maximizes his total revenue.
3(c) Cost price of the computer A0=50000.
Depreciation r=10%
A(t)=A0(1−100r)t Given t=12 years
A(12)=50000(1−10010)12=14121.48Scrap value at the end of 12 years is Rs. 14121.48.
Comments