3(a) Let x = x= x = the amount of the first investment, y = y= y = the amount of the second investment, and z = z= z = the amount of the third investment. Then
x + y + z = 8000 x+y+z=8000 x + y + z = 8000
0.07 x + 0.08 y + 0.09 z = 317.50 0.07x+0.08y+0.09z=317.50 0.07 x + 0.08 y + 0.09 z = 317.50
0.07 x = 0.08 y + 5 0
.07x=0.08y+5 0.07 x = 0.08 y + 5
x + y + z = 8000 7 x + 8 y + 9 z = 31750 7 x − 8 y = 500 \begin{matrix}
x+y+z=8000 \\
7x+8y+9z=31750 \\
7x-8y=500
\end{matrix} x + y + z = 8000 7 x + 8 y + 9 z = 31750 7 x − 8 y = 500
( 1 1 1 8000 7 8 9 31750 7 − 8 0 500 ) \begin{pmatrix}
1 & 1 & 1 & & 8000 \\
7 & 8 & 9 & & 31750 \\
7 & -8 & 0 & & 500 \\
\end{pmatrix} ⎝ ⎛ 1 7 7 1 8 − 8 1 9 0 8000 31750 500 ⎠ ⎞ R 2 = R 2 − 7 R 1 R_2=R_2-7R_1 R 2 = R 2 − 7 R 1
( 1 1 1 8000 0 1 2 − 24250 7 − 8 0 500 ) \begin{pmatrix}
1 & 1 & 1 & & 8000 \\
0 & 1 & 2 & & -24250 \\
7 & -8 & 0 & & 500 \\
\end{pmatrix} ⎝ ⎛ 1 0 7 1 1 − 8 1 2 0 8000 − 24250 500 ⎠ ⎞ R 3 = R 3 − 7 R 1 R_3=R_3-7R_1 R 3 = R 3 − 7 R 1
( 1 1 1 8000 0 1 2 − 24250 0 − 15 − 7 − 55500 ) \begin{pmatrix}
1 & 1 & 1 & & 8000 \\
0 & 1 & 2 & & -24250 \\
0 & -15 & -7 & & -55500 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 1 1 − 15 1 2 − 7 8000 − 24250 − 55500 ⎠ ⎞ R 1 = R 1 − R 2 R_1=R_1-R_2 R 1 = R 1 − R 2
( 1 0 − 1 32250 0 1 2 − 24250 0 − 15 − 7 − 55500 ) \begin{pmatrix}
1 & 0 & -1 & & 32250 \\
0 & 1 & 2 & & -24250 \\
0 & -15 & -7 & & -55500 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 − 15 − 1 2 − 7 32250 − 24250 − 55500 ⎠ ⎞ R 3 = R 3 + 15 R 2 R_3=R_3+15R_2 R 3 = R 3 + 15 R 2
( 1 0 − 1 32250 0 1 2 − 24250 0 0 23 − 419250 ) \begin{pmatrix}
1 & 0 & -1 & & 32250 \\
0 & 1 & 2 & & -24250 \\
0 & 0 &23 & & -419250 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 1 2 23 32250 − 24250 − 419250 ⎠ ⎞ R 3 = R 3 / 23 R_3=R_3/23 R 3 = R 3 /23
( 1 0 − 1 32250 0 1 2 − 24250 0 0 1 − 419250 23 ) \begin{pmatrix}
1 & 0 & -1 & & 32250 \\
0 & 1 & 2 & & -24250 \\
0 & 0 &1 & & -\dfrac{419250}{23}\\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 1 2 1 32250 − 24250 − 23 419250 ⎠ ⎞ R 1 = R 1 + R 3 R_1=R_1+R_3 R 1 = R 1 + R 3
( 1 0 0 322500 23 0 1 2 − 24250 0 0 1 − 419250 23 ) \begin{pmatrix}
1 & 0 & 0 & & \dfrac{322500}{23} \\
0 & 1 & 2 & & -24250 \\
0 & 0 &1 & & -\dfrac{419250}{23}\\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 2 1 23 322500 − 24250 − 23 419250 ⎠ ⎞ R 2 = R 2 − 2 R 3 R_2=R_2-2R_3 R 2 = R 2 − 2 R 3
( 1 0 0 322500 23 0 1 0 280750 23 0 0 1 − 419250 23 ) \begin{pmatrix}
1 & 0 & 0 & & \dfrac{322500}{23} \\ \\
0 & 1 & 0 & & \dfrac{280750}{23} \\ \\
0 & 0 &1 & & -\dfrac{419250}{23}\\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 0 1 23 322500 23 280750 − 23 419250 ⎠ ⎞ Since we obtain z = − 419250 23 < 0 , z=-\dfrac{419250}{23}<0, z = − 23 419250 < 0 , then the problem has no solution.
Suppose that an amount of Rs. 4,000 is distributed into three investments
x + y + z = 4000 7 x + 8 y + 9 z = 31750 7 x − 8 y = 500 \begin{matrix}
x+y+z=4000 \\
7x+8y+9z=31750 \\
7x-8y=500
\end{matrix} x + y + z = 4000 7 x + 8 y + 9 z = 31750 7 x − 8 y = 500
( 1 1 1 4000 7 8 9 31750 7 − 8 0 500 ) \begin{pmatrix}
1 & 1 & 1 & & 4000 \\
7 & 8 & 9 & & 31750 \\
7 & -8 & 0 & & 500 \\
\end{pmatrix} ⎝ ⎛ 1 7 7 1 8 − 8 1 9 0 4000 31750 500 ⎠ ⎞ R 2 = R 2 − 7 R 1 R_2=R_2-7R_1 R 2 = R 2 − 7 R 1
( 1 1 1 4000 0 1 2 3750 7 − 8 0 500 ) \begin{pmatrix}
1 & 1 & 1 & & 4000 \\
0 & 1 & 2 & & 3750 \\
7 & -8 & 0 & & 500 \\
\end{pmatrix} ⎝ ⎛ 1 0 7 1 1 − 8 1 2 0 4000 3750 500 ⎠ ⎞ R 3 = R 3 − 7 R 1 R_3=R_3-7R_1 R 3 = R 3 − 7 R 1
( 1 1 1 4000 0 1 2 3750 0 − 15 − 7 − 27500 ) \begin{pmatrix}
1 & 1 & 1 & & 4000 \\
0 & 1 & 2 & & 3750 \\
0 & -15 & -7 & & -27500 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 1 1 − 15 1 2 − 7 4000 3750 − 27500 ⎠ ⎞ R 1 = R 1 − R 2 R_1=R_1-R_2 R 1 = R 1 − R 2
( 1 0 − 1 250 0 1 2 3750 0 − 15 − 7 − 27500 ) \begin{pmatrix}
1 & 0 & -1 & & 250 \\
0 & 1 & 2 & &3750 \\
0 & -15 & -7 & & -27500 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 − 15 − 1 2 − 7 250 3750 − 27500 ⎠ ⎞ R 3 = R 3 + 15 R 2 R_3=R_3+15R_2 R 3 = R 3 + 15 R 2
( 1 0 − 1 250 0 1 2 3750 0 0 23 28750 ) \begin{pmatrix}
1 & 0 & -1 & & 250 \\
0 & 1 & 2 & & 3750 \\
0 & 0 &23 & & 28750 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 1 2 23 250 3750 28750 ⎠ ⎞ R 3 = R 3 / 23 R_3=R_3/23 R 3 = R 3 /23
( 1 0 − 1 250 0 1 2 3750 0 0 1 1250 ) \begin{pmatrix}
1 & 0 & -1 & & 250 \\
0 & 1 & 2 & & 3750 \\
0 & 0 &1 & & 1250\\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 1 2 1 250 3750 1250 ⎠ ⎞ R 1 = R 1 + R 3 R_1=R_1+R_3 R 1 = R 1 + R 3
( 1 0 0 1500 0 1 2 3750 0 0 1 1250 ) \begin{pmatrix}
1 & 0 & 0 & &1500 \\
0 & 1 & 2 & & 3750 \\
0 & 0 &1 & & 1250\\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 2 1 1500 3750 1250 ⎠ ⎞ R 2 = R 2 − 2 R 3 R_2=R_2-2R_3 R 2 = R 2 − 2 R 3
( 1 0 0 1500 0 1 0 1250 0 0 1 1250 ) \begin{pmatrix}
1 & 0 & 0 & &1500 \\
0 & 1 & 0 & &1250 \\
0 & 0 &1 & & 1250\\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 0 1 1500 1250 1250 ⎠ ⎞ x = 1500 , y = 1250 , z = 1250. x=1500, y=1250, z=1250. x = 1500 , y = 1250 , z = 1250.
We have correct solution.
3(b) Let x = x= x = the size of the order (the number of dozen).
Total revenue is
R = R ( x ) = { 24 x x ≤ 50 x ( 24 − 0.2 ( x − 50 ) ) x ≥ 50 R=R(x)= \begin{cases}
24x & x\leq50 \\
x(24-0.2(x-50)) &x\geq50
\end{cases} R = R ( x ) = { 24 x x ( 24 − 0.2 ( x − 50 )) x ≤ 50 x ≥ 50
R = R ( x ) = { 24 x x ≤ 50 34 x − 0.2 x 2 x ≥ 50 R=R(x)= \begin{cases}
24x & x\leq50 \\
34x-0.2x^2 &x\geq50
\end{cases} R = R ( x ) = { 24 x 34 x − 0.2 x 2 x ≤ 50 x ≥ 50 For maximum R R R we have x = − 34 2 ( − 0.2 ) = 85 > 50 x=-\dfrac{34}{2(-0.2)}=85>50 x = − 2 ( − 0.2 ) 34 = 85 > 50
Check p = 24 − 0.2 ( 85 − 50 ) = 17 > 0. p=24-0.2(85-50)=17>0. p = 24 − 0.2 ( 85 − 50 ) = 17 > 0.
Order in 85 85 85 dozen maximizes his total revenue.
3(c) Cost price of the computer A 0 = 50000. A_0=50000. A 0 = 50000.
Depreciation r = 10 % r=10\% r = 10%
A ( t ) = A 0 ( 1 − r 100 ) t A(t)=A_0(1-\dfrac{r}{100})^t A ( t ) = A 0 ( 1 − 100 r ) t Given t = 12 y e a r s t=12\ years t = 12 ye a rs
A ( 12 ) = 50000 ( 1 − 10 100 ) 12 = 14121.48 A(12)=50000(1-\dfrac{10}{100})^{12}=14121.48 A ( 12 ) = 50000 ( 1 − 100 10 ) 12 = 14121.48 Scrap value at the end of 12 years is Rs. 14121.48. 14121.48. 14121.48.
Comments