Question #223709
Matrix A is 2x2 matrix

Let A = [(1) (4) (3) (5)]

1.a Find A^-1 by using row operations
1.b Use question 1.a to Express A as a product of elementary matrices
1
Expert's answer
2021-08-08T16:52:56-0400

1. a


A=(1435)A=\begin{pmatrix} 1& 4\\ 3 & 5 \end{pmatrix}

detA=1435=512=70=>A1 exists\det A=\begin{vmatrix} 1 & 4 \\ 3 & 5 \end{vmatrix}=5-12=-7\not=0=>A^{-1}\ exists

A1=17(5431)A^{-1}=\dfrac{1}{-7}\begin{pmatrix} 5 & -4 \\ -3 & 1 \end{pmatrix}

A1=(5/74/73/71/7)A^{-1}=\begin{pmatrix} -5/7& 4/7 \\ 3/7 & -1/7 \end{pmatrix}

2. Augment the matrix with the identity matrix:


(14103501)\begin{pmatrix} 1 & 4 & & 1 & 0 \\ 3 & 5 & & 0 & 1 \end{pmatrix}

R2=R23R1R_2=R_2-3R_1


(14100731)\begin{pmatrix} 1 & 4 & & 1 & 0 \\ 0 & -7 & & -3 & 1 \end{pmatrix}

R2=R2/(7)R_2=R_2/(-7)


(1410013/71/7)\begin{pmatrix} 1 & 4 & & 1 & 0 \\ 0 & 1 & & 3/7 & -1/7 \end{pmatrix}

R1=R14R2R_1=R_1-4R_2


(105/74/7013/71/7)\begin{pmatrix} 1 & 0 & & -5/7 & 4/7 \\ 0 & 1 & & 3/7 & -1/7 \end{pmatrix}

A1=(5/74/73/71/7)A^{-1}=\begin{pmatrix} -5/7& 4/7 \\ 3/7 & -1/7 \end{pmatrix}




R2=R2+3R1R_2=R_2+3R_1


(1031)\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}

R2=7R2R_2=-7R_2


(1007)\begin{pmatrix} 1 & 0 \\ 0 & -7 \end{pmatrix}

R1=R1+4R2R_1=R_1+4R_2


(1401)\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}



A=(1435)=(1031)(1007)(1401)A=\begin{pmatrix} 1& 4\\ 3 & 5 \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & -7 \end{pmatrix}\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS