Question #223069

Find two vectors of norm 1 that are orthogonal to the vectors u = (2,1, −4,0), v = (−1, −1,2,2),

and w = (3,2,5,4).


1
Expert's answer
2021-08-05T15:38:29-0400

Let vector x=(a,b,c,d)x=(a, b, c, d) is orthogonal to the vectors u=(2,1,4,0),v=(1,1,2,2),u=(2,1,-4,0), v=(-1,-1,2,2),

and w=(3,2,5,4).w=(3,2,5,4). Then


2a+b4c=0ab+2c+2d=03a+2b+5c+4d=0\begin{matrix} 2a+b-4c=0 \\ -a-b+2c+2d=0 \\ 3a+2b+5c+4d=0 \\ \end{matrix}

Augmented matrix


A=(214001122032540)A=\begin{pmatrix} 2 & 1 & -4 & 0 & & 0 \\ -1 & -1 & 2 & 2 & & 0 \\ 3 & 2 & 5 & 4 & & 0 \\ \end{pmatrix}

R1=R1/2R_1=R_1/2


(11/22001122032540)\begin{pmatrix} 1 & 1/2 & -2 & 0 & & 0 \\ -1 & -1 & 2 & 2 & & 0 \\ 3 & 2 & 5 & 4 & & 0 \\ \end{pmatrix}

R2=R2+R1R_2=R_2+R_1


(11/220001/202032540)\begin{pmatrix} 1 & 1/2 & -2 & 0 & & 0 \\ 0 & -1/2 & 0 & 2 & & 0 \\ 3 & 2 & 5 & 4 & & 0 \\ \end{pmatrix}

R3=R33R1R_3=R_3-3R_1


(11/220001/202001/21140)\begin{pmatrix} 1 & 1/2 & -2 & 0 & & 0 \\ 0 & -1/2 & 0 & 2 & & 0 \\ 0 & 1/2 & 11 & 4 & & 0 \\ \end{pmatrix}

R2=2R2R_2=-2R_2


(11/22000104001/21140)\begin{pmatrix} 1 & 1/2 & -2 & 0 & & 0 \\ 0 & 1 & 0 & -4& & 0 \\ 0 & 1/2 & 11 & 4 & & 0 \\ \end{pmatrix}

R1=R1R2/2R_1=R_1-R_2/2


(102200104001/21140)\begin{pmatrix} 1 & 0 & -2 & 2 & & 0 \\ 0 & 1 & 0 & -4& & 0 \\ 0 & 1/2 & 11 & 4 & & 0 \\ \end{pmatrix}

R3=R3R2/2R_3=R_3-R_2/2


(1022001040001160)\begin{pmatrix} 1 & 0 & -2 & 2 & & 0 \\ 0 & 1 & 0 & -4& & 0 \\ 0 & 0 & 11 & 6 & & 0 \\ \end{pmatrix}

R3=R3/11R_3=R_3/11


(10220010400016/110)\begin{pmatrix} 1 & 0 & -2 & 2 & & 0 \\ 0 & 1 & 0 & -4& & 0 \\ 0 & 0 & 1 & 6/11 & & 0 \\ \end{pmatrix}

R1=R1+2R3R_1=R_1+2R_3


(10034/110010400016/110)\begin{pmatrix} 1 & 0 & 0 & 34/11 & & 0 \\ 0 & 1 & 0 & -4& & 0 \\ 0 & 0 & 1 & 6/11 & & 0 \\ \end{pmatrix}

x=(3411t,4t,611t,t),tRx=(-\dfrac{34}{11}t, 4t, -\dfrac{6}{11}t, t), t\in \R

x=t11(34)2+(44)2+(6)2+(11)2=5711t|x|=\dfrac{|t|}{11}\sqrt{(-34)^2+(44)^2+(-6)^2+(11)^2}=\dfrac{57}{11}|t|


t=1157:x1=(3457,4457,657,1157)t=\frac{11}{57}:\,x_1=(-\dfrac{34}{57}, \dfrac{44}{57}, -\dfrac{6}{57}, \dfrac{11}{57})

t=1157:x2=(3457,4457,657,1157)t=-\frac{11}{57}:\,x_2=(\dfrac{34}{57}, -\dfrac{44}{57}, \dfrac{6}{57}, -\dfrac{11}{57})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS