Let vector "x=(a, b, c, d)" is orthogonal to the vectors "u=(2,1,-4,0), v=(-1,-1,2,2),"
and "w=(3,2,5,4)." Then
"\\begin{matrix}\n 2a+b-4c=0 \\\\\n -a-b+2c+2d=0 \\\\\n 3a+2b+5c+4d=0 \\\\\n\n\\end{matrix}" Augmented matrix
"A=\\begin{pmatrix}\n2 & 1 & -4 & 0 & & 0 \\\\\n-1 & -1 & 2 & 2 & & 0 \\\\\n3 & 2 & 5 & 4 & & 0 \\\\\n\\end{pmatrix}" "R_1=R_1\/2"
"\\begin{pmatrix}\n1 & 1\/2 & -2 & 0 & & 0 \\\\\n-1 & -1 & 2 & 2 & & 0 \\\\\n3 & 2 & 5 & 4 & & 0 \\\\\n\\end{pmatrix}" "R_2=R_2+R_1"
"\\begin{pmatrix}\n1 & 1\/2 & -2 & 0 & & 0 \\\\\n0 & -1\/2 & 0 & 2 & & 0 \\\\\n3 & 2 & 5 & 4 & & 0 \\\\\n\\end{pmatrix}" "R_3=R_3-3R_1"
"\\begin{pmatrix}\n1 & 1\/2 & -2 & 0 & & 0 \\\\\n0 & -1\/2 & 0 & 2 & & 0 \\\\\n0 & 1\/2 & 11 & 4 & & 0 \\\\\n\\end{pmatrix}" "R_2=-2R_2"
"\\begin{pmatrix}\n1 & 1\/2 & -2 & 0 & & 0 \\\\\n0 & 1 & 0 & -4& & 0 \\\\\n0 & 1\/2 & 11 & 4 & & 0 \\\\\n\\end{pmatrix}" "R_1=R_1-R_2\/2"
"\\begin{pmatrix}\n1 & 0 & -2 & 2 & & 0 \\\\\n0 & 1 & 0 & -4& & 0 \\\\\n0 & 1\/2 & 11 & 4 & & 0 \\\\\n\\end{pmatrix}" "R_3=R_3-R_2\/2"
"\\begin{pmatrix}\n1 & 0 & -2 & 2 & & 0 \\\\\n0 & 1 & 0 & -4& & 0 \\\\\n0 & 0 & 11 & 6 & & 0 \\\\\n\\end{pmatrix}" "R_3=R_3\/11"
"\\begin{pmatrix}\n1 & 0 & -2 & 2 & & 0 \\\\\n0 & 1 & 0 & -4& & 0 \\\\\n0 & 0 & 1 & 6\/11 & & 0 \\\\\n\\end{pmatrix}""R_1=R_1+2R_3"
"\\begin{pmatrix}\n1 & 0 & 0 & 34\/11 & & 0 \\\\\n0 & 1 & 0 & -4& & 0 \\\\\n0 & 0 & 1 & 6\/11 & & 0 \\\\\n\\end{pmatrix}"
"x=(-\\dfrac{34}{11}t, 4t, -\\dfrac{6}{11}t, t), t\\in \\R"
"|x|=\\dfrac{|t|}{11}\\sqrt{(-34)^2+(44)^2+(-6)^2+(11)^2}=\\dfrac{57}{11}|t|"
"t=\\frac{11}{57}:\\,x_1=(-\\dfrac{34}{57}, \\dfrac{44}{57}, -\\dfrac{6}{57}, \\dfrac{11}{57})"
"t=-\\frac{11}{57}:\\,x_2=(\\dfrac{34}{57}, -\\dfrac{44}{57}, \\dfrac{6}{57}, -\\dfrac{11}{57})"
Comments
Leave a comment