Let vector x=(a,b,c,d) is orthogonal to the vectors u=(2,1,−4,0),v=(−1,−1,2,2),
and w=(3,2,5,4). Then
2a+b−4c=0−a−b+2c+2d=03a+2b+5c+4d=0 Augmented matrix
A=⎝⎛2−131−12−425024000⎠⎞ R1=R1/2
⎝⎛1−131/2−12−225024000⎠⎞ R2=R2+R1
⎝⎛1031/2−1/22−205024000⎠⎞ R3=R3−3R1
⎝⎛1001/2−1/21/2−2011024000⎠⎞ R2=−2R2
⎝⎛1001/211/2−20110−44000⎠⎞ R1=R1−R2/2
⎝⎛100011/2−20112−44000⎠⎞ R3=R3−R2/2
⎝⎛100010−20112−46000⎠⎞ R3=R3/11
⎝⎛100010−2012−46/11000⎠⎞R1=R1+2R3
⎝⎛10001000134/11−46/11000⎠⎞
x=(−1134t,4t,−116t,t),t∈R
∣x∣=11∣t∣(−34)2+(44)2+(−6)2+(11)2=1157∣t∣
t=5711:x1=(−5734,5744,−576,5711)
t=−5711:x2=(5734,−5744,576,−5711)
Comments