Answer to Question #223044 in Linear Algebra for Susan

Question #223044

Write the polynomial x^2+4x-3 as a linear combination of 2x^2-3x and x^2-2x+5 and x+3


1
Expert's answer
2021-08-04T15:28:07-0400

Let


x2+4x3=a(2x23x)+b(x22x+5)+c(x+3)x^2+4x-3=a(2x^2-3x)+b(x^2-2x+5)+c(x+3)


x2+4x3=(2a+b)x2+(3a2b+c)x+(5b+3c)x^2+4x-3=(2a+b)x^2+(-3a-2b+c)x+(5b+3c)

x2:2a+b=1x^2:2a+b=1

x1:3a2b+c=4x^1:-3a-2b+c=4

x0:5b+3c=3x^0:5b+3c=-3

a=1212ba=\dfrac{1}{2}-\dfrac{1}{2}b

c=153bc=-1-\dfrac{5}{3}b

32+32b2b153b=4-\dfrac{3}{2}+\dfrac{3}{2}b-2b-1-\dfrac{5}{3}b=4



136b=132-\dfrac{13}{6}b=\dfrac{13}{2}

b=3b=-3


a=2a=2


c=4c=4


x2+4x3=2(2x23x)3(x22x+5)+4(x+3)x^2+4x-3=2(2x^2-3x)-3(x^2-2x+5)+4(x+3)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment