Answer to Question #223066 in Linear Algebra for Harry

Question #223066
A is a 2x2 matrix

Let A = {(1) (1/d) (c) (d)} Find the numbers c and d such that A^2 =0
1
Expert's answer
2021-08-04T18:13:42-0400
A=(11/dcd)A=\begin{pmatrix} 1& 1/d \\ c & d \end{pmatrix}

A2=(11/dcd)(11/dcd)A^2=\begin{pmatrix} 1& 1/d \\ c & d \end{pmatrix}\begin{pmatrix} 1& 1/d \\ c & d \end{pmatrix}

=(1+c/d1+1/dc+cdc/d+d2)=(0000)=\begin{pmatrix} 1+c/d& 1+1/d \\ c+cd & c/d+d^2 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}

1+c/d=01+1/d=0c+c/d=0c/d+d2=0\begin{matrix} 1+c/d=0\\ 1+1/d=0\\ c+c/d=0\\ c/d+d^2=0\\ \end{matrix}

c=1,d=1c=1, d=-1


A=(1111)A=\begin{pmatrix} 1& -1 \\ 1 & -1 \end{pmatrix}


A2=(1111)(1111)=(111+1111+1)A^2=\begin{pmatrix} 1& -1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 1& -1 \\ 1 & -1 \end{pmatrix}=\begin{pmatrix} 1-1& -1+1 \\ 1-1 & -1+1 \end{pmatrix}

=(0000)=\begin{pmatrix} 0& 0 \\ 0 & 0 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment