2021-08-03T17:16:11-04:00
A is a 2x2 matrix
Let A = {(1) (1/d) (c) (d)} Find the numbers c and d such that A^2 =0
1
2021-08-04T18:13:42-0400
A = ( 1 1 / d c d ) A=\begin{pmatrix}
1& 1/d \\
c & d
\end{pmatrix} A = ( 1 c 1/ d d )
A 2 = ( 1 1 / d c d ) ( 1 1 / d c d ) A^2=\begin{pmatrix}
1& 1/d \\
c & d
\end{pmatrix}\begin{pmatrix}
1& 1/d \\
c & d
\end{pmatrix} A 2 = ( 1 c 1/ d d ) ( 1 c 1/ d d )
= ( 1 + c / d 1 + 1 / d c + c d c / d + d 2 ) = ( 0 0 0 0 ) =\begin{pmatrix}
1+c/d& 1+1/d \\
c+cd & c/d+d^2
\end{pmatrix}=\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix} = ( 1 + c / d c + c d 1 + 1/ d c / d + d 2 ) = ( 0 0 0 0 )
1 + c / d = 0 1 + 1 / d = 0 c + c / d = 0 c / d + d 2 = 0 \begin{matrix}
1+c/d=0\\
1+1/d=0\\
c+c/d=0\\
c/d+d^2=0\\
\end{matrix} 1 + c / d = 0 1 + 1/ d = 0 c + c / d = 0 c / d + d 2 = 0
c = 1 , d = − 1 c=1, d=-1 c = 1 , d = − 1
A = ( 1 − 1 1 − 1 ) A=\begin{pmatrix}
1& -1 \\
1 & -1
\end{pmatrix} A = ( 1 1 − 1 − 1 )
A 2 = ( 1 − 1 1 − 1 ) ( 1 − 1 1 − 1 ) = ( 1 − 1 − 1 + 1 1 − 1 − 1 + 1 ) A^2=\begin{pmatrix}
1& -1 \\
1 & -1
\end{pmatrix}\begin{pmatrix}
1& -1 \\
1 & -1
\end{pmatrix}=\begin{pmatrix}
1-1& -1+1 \\
1-1 & -1+1
\end{pmatrix} A 2 = ( 1 1 − 1 − 1 ) ( 1 1 − 1 − 1 ) = ( 1 − 1 1 − 1 − 1 + 1 − 1 + 1 )
= ( 0 0 0 0 ) =\begin{pmatrix}
0& 0 \\
0 & 0
\end{pmatrix} = ( 0 0 0 0 )
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments