Question #223169
Question1

 

Given   matrix A =        2      2     1
                          1      3     1
                          1      2     2

 
 

1.1 find the eigenvalues of   A

 
1.2.   Determine an eigenvector for the eigenvalue  =  5






1
Expert's answer
2021-08-05T08:02:12-0400

A=[221131122]A=\begin{bmatrix} 2 & 2&1 \\ 1 & 3&1\\ 1&2&2 \end{bmatrix}

1.1. det(AλI)=2λ2113λ1122λ=λ3+7λ211λ+5=(λ5)(λ1)2=0\det (A-\lambda I)=\begin{vmatrix} 2-\lambda & 2&1 \\ 1 & 3-\lambda &1\\ 1&2&2-\lambda \end{vmatrix}=-\lambda^3+7\lambda^2-11\lambda+5=-(\lambda-5)(\lambda-1)^2=0


Eigenvalues: λ1=5\lambda _1=5 and λ2=1\lambda_2=1


1.2.

λ1=5\lambda_1=5 :  (A5I)x=[321121123][xyz]=[000]: \ \ (A-5I)\mathbf{x}= \begin{bmatrix} -3 & 2&1 \\ 1 & -2&1\\ 1&2&-3 \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix}=\begin{bmatrix} 0\\0\\0 \end{bmatrix} gives the eigenvector x1=[111]\mathbf{x}_1=\begin{bmatrix}1\\1\\1\end{bmatrix} .


Answer: 1.1. λ1=5\lambda_1=5 and λ2=1\lambda_2=1 ; 1.2. x1=[111]\mathbf{x}_1=\begin{bmatrix}1\\1\\1\end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS