Question #223387

Let u=(-1/2,-1,2/3) ,v=(4,-1,-3) and θ=1/2. Find

i) u.θv

ii)A non-zero vector orthogonal to both u and v


1
Expert's answer
2021-08-12T14:59:31-0400

u=(-1/2,-1,2/3)

v=(4,-1,-3)


u.v = ?

θ = ?


(i)

u=1/2ij+2/3ku=(1/2)2+(1)2+(2/3)2)=1.302u = -1/2i -j + 2/3k\\ |u| =\sqrt{(-1/2)²+( -1)²+ (2/3)²) }\\=1.302\\


v=4ijkv=(4)2+(1)2+(3)2)=5.10v = 4i-j -k\\ |v|= \sqrt{(4)²+( -1)²+ (-3)²)} =5.10


dot product (u.v) = (aibi+ajbj+akbk)(a_ib_i + a_jb_j + a_kb_k)

=((1/2×4)+(1×1)+(2/3×3))=(2+12)=3= ((-1/2×4)+ (-1×-1) +(2/3×-3))\\ = (-2+1-2) = -3


θ=cos1u.vuv=cos131.302×5.10\theta=\cos^{-1} \dfrac{u.v}{|u||v|} =\cos^{-1}\dfrac{-3}{1.302× 5.10}\\


=cos10.25=116.9°=\cos^{-1} -0.25 = 116.9°


(ii)

u=1/2ij+2/3kv=4ij3ku = -1/2i -j + 2/3k\\ v = 4i-j -3k

A vector COC \neq O that is orthogonal to both.


Since C=(c1,c2,c3)C = (c_1, c_2, c_3) must be orthogonal to both u and v;

uC=0    1/2c1c2+2/3c3=0vC=0    4c1c23c3=0\begin{aligned} u\cdot C &= 0 & \implies & &-1/2c_1 - c_2 + 2/3c_3 &= 0 \\ v\cdot C &= 0 & \implies & &4c_1 -c_2 - 3c_3 = 0 \end{aligned}


From the first equation; c2=1/2c1+2/3c3c_2= -1/2c_1 +2/3c_3


[4c1c23c3=0    4c1(1/2c1+2/3c3)3c3=0    4c1+1/2c12/3c33c3=0    9/2 c1=11/3 c3[ 4c_1 -c_2 - 3c_3 = 0 \quad \implies \quad 4c_1 -(-1/2c_1 + 2/3c_3) - 3c_3= 0 \quad \implies \\ 4c_1+1/2c_1-2/3c_3-3c_3=0\\ \implies 9/2\ c_1 = 11/3\ c_3

c1=2227 c3\therefore c_1 = \dfrac{22}{27}\ c_3


Since c3c_3 is then arbitrary we choose c3=27c_3 = 27 and obtain

[c2=7c1=22][ c_2 = 7 \qquad c_1 = 22]


Therefore, C=(22,7,27)C = (22,7,27)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS