u=(-1/2,-1,2/3)
v=(4,-1,-3)
u.v = ?
θ = ?
(i)
u=−1/2i−j+2/3k∣u∣=(−1/2)2+(−1)2+(2/3)2)=1.302
v=4i−j−k∣v∣=(4)2+(−1)2+(−3)2)=5.10
dot product (u.v) = (aibi+ajbj+akbk)
=((−1/2×4)+(−1×−1)+(2/3×−3))=(−2+1−2)=−3
θ=cos−1∣u∣∣v∣u.v=cos−11.302×5.10−3
=cos−1−0.25=116.9°
(ii)
u=−1/2i−j+2/3kv=4i−j−3k
A vector C=O that is orthogonal to both.
Since C=(c1,c2,c3) must be orthogonal to both u and v;
u⋅Cv⋅C=0=0⟹⟹−1/2c1−c2+2/3c34c1−c2−3c3=0=0
From the first equation; c2=−1/2c1+2/3c3
[4c1−c2−3c3=0⟹4c1−(−1/2c1+2/3c3)−3c3=0⟹4c1+1/2c1−2/3c3−3c3=0⟹9/2 c1=11/3 c3
∴c1=2722 c3
Since c3 is then arbitrary we choose c3=27 and obtain
[c2=7c1=22]
Therefore, C=(22,7,27)
Comments