Let u=(-1/2,-1,2/3) ,v=(4,-1,-3) and θ=1/2. Find
i) u.θv
ii)A non-zero vector orthogonal to both u and v
u=(-1/2,-1,2/3)
v=(4,-1,-3)
u.v = ?
θ = ?
(i)
"u = -1\/2i -j + 2\/3k\\\\\n|u| =\\sqrt{(-1\/2)\u00b2+( -1)\u00b2+ (2\/3)\u00b2) }\\\\=1.302\\\\"
"v = 4i-j -k\\\\\n|v|= \\sqrt{(4)\u00b2+( -1)\u00b2+ (-3)\u00b2)} =5.10"
dot product (u.v) = "(a_ib_i + a_jb_j + a_kb_k)"
"= ((-1\/2\u00d74)+ (-1\u00d7-1) +(2\/3\u00d7-3))\\\\\n= (-2+1-2) = -3"
"\\theta=\\cos^{-1} \\dfrac{u.v}{|u||v|} =\\cos^{-1}\\dfrac{-3}{1.302\u00d7 5.10}\\\\"
"=\\cos^{-1} -0.25 = 116.9\u00b0"
(ii)
"u = -1\/2i -j + 2\/3k\\\\\nv = 4i-j -3k"
A vector "C \\neq O" that is orthogonal to both.
Since "C = (c_1, c_2, c_3)" must be orthogonal to both u and v;
"\\begin{aligned} u\\cdot C &= 0 & \\implies & &-1\/2c_1 - c_2 + 2\/3c_3 &= 0 \\\\ v\\cdot C &= 0 & \\implies & &4c_1 -c_2 - 3c_3 = 0 \\end{aligned}"
From the first equation; "c_2= -1\/2c_1 +2\/3c_3"
"[ 4c_1 -c_2 - 3c_3 = 0 \\quad \\implies \\quad 4c_1 -(-1\/2c_1 + 2\/3c_3) - 3c_3= 0 \\quad \\implies \\\\\n4c_1+1\/2c_1-2\/3c_3-3c_3=0\\\\ \\implies 9\/2\\ c_1 = 11\/3\\ c_3"
"\\therefore c_1 = \\dfrac{22}{27}\\ c_3"
Since "c_3" is then arbitrary we choose "c_3 = 27" and obtain
"[ c_2 = 7 \\qquad c_1 = 22]"
Therefore, "C = (22,7,27)"
Comments
Leave a comment