u=(-1/2,-1,2/3)
v=(4,-1,-3)
u.v = ?
θ = ?
(i)
u = − 1 / 2 i − j + 2 / 3 k ∣ u ∣ = ( − 1 / 2 ) 2 + ( − 1 ) 2 + ( 2 / 3 ) 2 ) = 1.302 u = -1/2i -j + 2/3k\\
|u| =\sqrt{(-1/2)²+( -1)²+ (2/3)²) }\\=1.302\\ u = − 1/2 i − j + 2/3 k ∣ u ∣ = ( − 1/2 ) 2 + ( − 1 ) 2 + ( 2/3 ) 2 ) = 1.302
v = 4 i − j − k ∣ v ∣ = ( 4 ) 2 + ( − 1 ) 2 + ( − 3 ) 2 ) = 5.10 v = 4i-j -k\\
|v|= \sqrt{(4)²+( -1)²+ (-3)²)} =5.10 v = 4 i − j − k ∣ v ∣ = ( 4 ) 2 + ( − 1 ) 2 + ( − 3 ) 2 ) = 5.10
dot product (u.v) = ( a i b i + a j b j + a k b k ) (a_ib_i + a_jb_j + a_kb_k) ( a i b i + a j b j + a k b k )
= ( ( − 1 / 2 × 4 ) + ( − 1 × − 1 ) + ( 2 / 3 × − 3 ) ) = ( − 2 + 1 − 2 ) = − 3 = ((-1/2×4)+ (-1×-1) +(2/3×-3))\\
= (-2+1-2) = -3 = (( − 1/2 × 4 ) + ( − 1 × − 1 ) + ( 2/3 × − 3 )) = ( − 2 + 1 − 2 ) = − 3
θ = cos − 1 u . v ∣ u ∣ ∣ v ∣ = cos − 1 − 3 1.302 × 5.10 \theta=\cos^{-1} \dfrac{u.v}{|u||v|} =\cos^{-1}\dfrac{-3}{1.302× 5.10}\\ θ = cos − 1 ∣ u ∣∣ v ∣ u . v = cos − 1 1.302 × 5.10 − 3
= cos − 1 − 0.25 = 116.9 ° =\cos^{-1} -0.25 = 116.9° = cos − 1 − 0.25 = 116.9°
(ii)
u = − 1 / 2 i − j + 2 / 3 k v = 4 i − j − 3 k u = -1/2i -j + 2/3k\\
v = 4i-j -3k u = − 1/2 i − j + 2/3 k v = 4 i − j − 3 k
A vector C ≠ O C \neq O C = O that is orthogonal to both.
Since C = ( c 1 , c 2 , c 3 ) C = (c_1, c_2, c_3) C = ( c 1 , c 2 , c 3 ) must be orthogonal to both u and v;
u ⋅ C = 0 ⟹ − 1 / 2 c 1 − c 2 + 2 / 3 c 3 = 0 v ⋅ C = 0 ⟹ 4 c 1 − c 2 − 3 c 3 = 0 \begin{aligned} u\cdot C &= 0 & \implies & &-1/2c_1 - c_2 + 2/3c_3 &= 0 \\ v\cdot C &= 0 & \implies & &4c_1 -c_2 - 3c_3 = 0 \end{aligned} u ⋅ C v ⋅ C = 0 = 0 ⟹ ⟹ − 1/2 c 1 − c 2 + 2/3 c 3 4 c 1 − c 2 − 3 c 3 = 0 = 0
From the first equation; c 2 = − 1 / 2 c 1 + 2 / 3 c 3 c_2= -1/2c_1 +2/3c_3 c 2 = − 1/2 c 1 + 2/3 c 3
[ 4 c 1 − c 2 − 3 c 3 = 0 ⟹ 4 c 1 − ( − 1 / 2 c 1 + 2 / 3 c 3 ) − 3 c 3 = 0 ⟹ 4 c 1 + 1 / 2 c 1 − 2 / 3 c 3 − 3 c 3 = 0 ⟹ 9 / 2 c 1 = 11 / 3 c 3 [ 4c_1 -c_2 - 3c_3 = 0 \quad \implies \quad 4c_1 -(-1/2c_1 + 2/3c_3) - 3c_3= 0 \quad \implies \\
4c_1+1/2c_1-2/3c_3-3c_3=0\\ \implies 9/2\ c_1 = 11/3\ c_3 [ 4 c 1 − c 2 − 3 c 3 = 0 ⟹ 4 c 1 − ( − 1/2 c 1 + 2/3 c 3 ) − 3 c 3 = 0 ⟹ 4 c 1 + 1/2 c 1 − 2/3 c 3 − 3 c 3 = 0 ⟹ 9/2 c 1 = 11/3 c 3
∴ c 1 = 22 27 c 3 \therefore c_1 = \dfrac{22}{27}\ c_3 ∴ c 1 = 27 22 c 3
Since c 3 c_3 c 3 is then arbitrary we choose c 3 = 27 c_3 = 27 c 3 = 27 and obtain
[ c 2 = 7 c 1 = 22 ] [ c_2 = 7 \qquad c_1 = 22] [ c 2 = 7 c 1 = 22 ]
Therefore, C = ( 22 , 7 , 27 ) C = (22,7,27) C = ( 22 , 7 , 27 )
Comments