Answer to Question #222295 in Linear Algebra for Daniel

Question #222295

Determine whether u=(2,8,2) is a linear combination of u1=(2,-2,0) u2=(3,0,-3) and u3=(-2,0,-1) or not


1
Expert's answer
2021-08-09T16:19:30-0400

solutiongiven u=(2,8,2)  u1=(2,2,0), u2=(3,0,3) and u3=(2,0,1) now we will be check u is a linear combination of u1, u2 and u3 or not,first of all we write a linear combination form of u in terms of  u1, u2 and u3such thatu=a.u1+b. u2 +c.u3(2,8,2) =a.(2,2,0)+b. (3,0,3) +c.(2,0,1)...(A) now we solve this expression to find a ,b and c if we will be get value of a ,b and c  then u is a linear combination of u1, u2 and u3 otherwise notagain(2,8,2) =a.(2,2,0)+b. (3,0,3) +c.(2,0,1) (2,8,2) =(2a+3b2c,2a,3bc)hence2a+3b2c=2...(1)2a=8...(2)3bc=2...(3)from (2)a=4...(4)put value of a in (1)3b2c=10...(5)now solve (5) and (3), we get b=23, and c=4...(6) we get a=4, b=23, and c=4hence we say  u is a linear combination of u1, u2 and u3 put value of a ,b and c  in eq(A)we get(2,8,2) =(4).(2,2,0)+(23). (3,0,3) +(4).(2,0,1)solution\\ given \space \\ u=(2,8,2) \space \\ \space u_1=(2,-2,0), \space u_2=(3,0,-3) \space and \space u_3=(-2,0,-1) \space \\ now \space we \space will \space be \space check \space u \space is \space a \space linear \space combination \space of \space u_1, \space u_2 \space and \space u_3 \space or \space not,\\ first \space of \space all \space we \space write \space a \space linear \space combination \space form \space of \space u \space in \space terms \space of \space \space u_1, \space u_2 \space and \space u_3\\ such \space that\\ u=a.u_1+b. \space u_2 \space +c.u_3\\ (2,8,2) \space =a.(2,-2,0)+b. \space (3,0,-3) \space +c.(-2,0,-1)...(A) \space \\ now \space we \space solve \space this \space expression \space to \space find \space a \space ,b \space and \space c \space \\ if \space we \space will \space be \space get \space value \space of \space a \space ,b \space and \space c \space \space then \space u \space is \space a \space linear \space combination \space of \space u_1, \space u_2 \space and \space u_3 \space otherwise \space not\\ ---------------------------------------\\ again\\ (2,8,2) \space =a.(2,-2,0)+b. \space (3,0,-3) \space +c.(-2,0,-1) \space \\ (2,8,2) \space =(2a+3b-2c,-2a,-3b-c)\\ hence\\ 2a+3b-2c=2...(1)\\ -2a=8...(2)\\ -3b-c=2...(3)\\ from \space (2)\\ a=-4...(4)\\ put \space value \space of \space a \space in \space (1)\\ 3b-2c=10...(5)\\ now \space solve \space (5) \space and \space (3), \space we \space get \space \\ b=\frac{2}{3}, \space and \space c=-4...(6) ---------------------------------------\\ \space we \space get \space \\ a=-4, \space b=\frac{2}{3}, \space and \space c=-4\\ hence \space we \space say \space \\ \space u \space is \space a \space linear \space combination \space of \space u_1, \space u_2 \space and \space u_3 \space \\ put \space value \space of \space a \space ,b \space and \space c \space \space in \space eq(A)\\ we \space get\\ (2,8,2) \space =(-4).(2,-2,0)+(\frac{2}{3}). \space (3,0,-3) \space +(-4).(-2,0,-1)\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment