show that the function f:R2 →R2 given f(x,y)=(x-y, x+y) is linear.
First
"f(\\alpha(x, y)) = f(\\alpha x, \\alpha y) = (\\alpha x - \\alpha y, \\alpha x + \\alpha y)"
"= (\\alpha(x-y) , \\alpha(x+y)) = \\alpha((x-y), (x+y)) = \\alpha f(x, y)"
Second
"f(x_1, y_1) + f(x_2, y_2) = (x_1-y_1, x_1+y_1) + (x_2-y_2, x_2+y_2) = (x_1-y_1+x_2-y_2, x_1+y_1+x_2+y_2)"
"= ((x_1+x_2)-(y_1+y_2), (x_1+x_2) + (y_1+y_2)) = f((x_1+x_2), (y_1+y_2))"
So f is a linear transformation
Comments
Leave a comment