Question #222293

show that the function f:R2 →R2 given f(x,y)=(x-y, x+y) is linear.


1
Expert's answer
2021-08-09T07:56:07-0400

First

f(α(x,y))=f(αx,αy)=(αxαy,αx+αy)f(\alpha(x, y)) = f(\alpha x, \alpha y) = (\alpha x - \alpha y, \alpha x + \alpha y)

=(α(xy),α(x+y))=α((xy),(x+y))=αf(x,y)= (\alpha(x-y) , \alpha(x+y)) = \alpha((x-y), (x+y)) = \alpha f(x, y)

Second

f(x1,y1)+f(x2,y2)=(x1y1,x1+y1)+(x2y2,x2+y2)=(x1y1+x2y2,x1+y1+x2+y2)f(x_1, y_1) + f(x_2, y_2) = (x_1-y_1, x_1+y_1) + (x_2-y_2, x_2+y_2) = (x_1-y_1+x_2-y_2, x_1+y_1+x_2+y_2)

=((x1+x2)(y1+y2),(x1+x2)+(y1+y2))=f((x1+x2),(y1+y2))= ((x_1+x_2)-(y_1+y_2), (x_1+x_2) + (y_1+y_2)) = f((x_1+x_2), (y_1+y_2))

So f is a linear transformation


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS