Question #220158

Suppose T ∈ L(V ) is normal. Prove that if range T = range T*


1
Expert's answer
2021-07-26T14:33:59-0400

T is normal implies that Tv=Tv||Tv||=||T^*v|| for all v. Thus, if vϵ null  Tv \epsilon \space null \space \space T then Tv=0||Tv||=0 implies thatTv=0||T^*v||=0 , thus, if vϵ null  Tv \epsilon \space null \space \space T^*. As (T)=T(T^∗)^∗ = T , this means that vϵ null  Tv \epsilon \space null \space \space T iff vϵ null  Tv \epsilon \space null \space \space T^*. So the kernels of T and Tare equal.

Null  T=(range  T)Null \space \space T^∗ = (range \space \space T )^{⊥} and Null  T=(range  T)Null \space \space T = (range \space \space T^*)^{⊥} . As null T = null T, this implies that

(Range  T)=(range  T)(R ange\space \space T)^{⊥}= (range \space \space T^*)^{⊥}

If U is a subspace of V, then (U)(U)^⊥ = U. Taking the orthogonal complement of both sides of the above equation gives us range T = range T.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS