Suppose T ∈ L(V ) is normal. Prove that if range T = range T*
T is normal implies that "||Tv||=||T^*v||" for all v. Thus, if "v \\epsilon \\space null \\space \\space T" then "||Tv||=0" implies that"||T^*v||=0" , thus, if "v \\epsilon \\space null \\space \\space T^*". As "(T^\u2217)^\u2217 = T" , this means that "v \\epsilon \\space null \\space \\space T" iff "v \\epsilon \\space null \\space \\space T^*". So the kernels of T and T∗ are equal.
"Null \\space \\space T^\u2217 = (range \\space \\space T )^{\u22a5}" and "Null \\space \\space T = (range \\space \\space T^*)^{\u22a5}" . As null T = null T∗, this implies that
"(R ange\\space \\space T)^{\u22a5}= (range \\space \\space T^*)^{\u22a5}"
If U is a subspace of V, then "(U)^\u22a5" = U. Taking the orthogonal complement of both sides of the above equation gives us range T = range T∗.
Comments
Leave a comment