Answer to Question #220099 in Linear Algebra for Anuj

Question #220099
Let V and W be vector spaces over F, where V is n-dimensional. Let K ≤ V and R ≤ W

be finite-dimensional subspaces such that dim K + dim R = n. Prove that there exists a linear

transformation L : V −→ W such that ker L = K and Im L = R.
1
Expert's answer
2021-07-26T14:42:12-0400

Let r=dimRr=\dim R, then dimK=nr\dim K=n-r.

Let e1,...,ere_1, ..., e_r be any basis for RR.

This basis can be extended to a basis e1,,er,er+1,,eme_1, \dots, e_r, e_{r+1}, \dots, e_m for WW, where m=dimWm=\dim W.

Let fr+1,...,fnf_{r+1}, ..., f_{n} be any basis for KK.

This basis can be extended to a basis f1,,fr,fr+1,,fnf_1, \dots, f_{r}, f_{r+1}, \dots,f_n for VV.

Define a linear transformation L:VWL:V\to W by the rule:

L(a1f1+a2f2++anfn)=a1e1++arerL(a_1f_1+a_2f_2+\dots+a_nf_n)=a_{1}e_1+\dots +a_{r}e_{r}


1) Show that ImL=R{\rm Im}\,L=R:

Since e1,...,ere_1, ..., e_{r} is a basis for RR,

L(a1f1++anfn)=a1e1++arerRL(a_1 f_1+\dots+a_n f_n)=a_1e_1+\dots +a_{r}e_{r}\in R and ImLR{\rm Im}\,L\subset R

For any yRy\in R if y=y1e1++yrery=y_1e_1+\dots + y_{r}e_{r} then, evidently, y=L(y1f1++yrfr)ImLy=L(y_1f_1+\dots + y_{r}f_{r})\in {\rm Im}\,L.

Therefore, ImL=R{\rm Im}\,L=R.


2) Show that Ker L=K{\rm Ker}\ L=K:

For any xKx\in K if x=xr+1fr+1++xnfnx=x_{r+1}f_{r+1}+\dots+x_nf_n then L(x)=0L(x)=0, i.e. xKer Lx\in{\rm Ker}\ L and, hence, KKer LK\subset {\rm Ker}\ L.

Conversely, if L(x)=0L(x)=0 and x=x1f1++xnfnx=x_{1}f_{1}+\dots+x_nf_n then L(x)=x1e1++xrer=0L(x)=x_{1}e_1+\dots +x_{r}e_{r}=0. Since Since e1,...,ere_1, ..., e_{r} is a basis for RR, they are linear independent, therefore x1==xr=0x_1=\dots=x_r=0.

This implies that x=xr+1fr+1++xnfnKx=x_{r+1}f_{r+1}+\dots+x_nf_n\in K and, hence, Ker LK{\rm Ker}\ L\subset K.

Therefore Ker L=K{\rm Ker}\ L= K.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment