Let "r=\\dim R", then "\\dim K=n-r".
Let "e_1, ..., e_r" be any basis for "R".
This basis can be extended to a basis "e_1, \\dots, e_r, e_{r+1}, \\dots, e_m" for "W", where "m=\\dim W".
Let "f_{r+1}, ..., f_{n}" be any basis for "K".
This basis can be extended to a basis "f_1, \\dots, f_{r}, f_{r+1}, \\dots,f_n" for "V".
Define a linear transformation "L:V\\to W" by the rule:
"L(a_1f_1+a_2f_2+\\dots+a_nf_n)=a_{1}e_1+\\dots +a_{r}e_{r}"
1) Show that "{\\rm Im}\\,L=R":
Since "e_1, ..., e_{r}" is a basis for "R",
"L(a_1 f_1+\\dots+a_n f_n)=a_1e_1+\\dots +a_{r}e_{r}\\in R" and "{\\rm Im}\\,L\\subset R"
For any "y\\in R" if "y=y_1e_1+\\dots + y_{r}e_{r}" then, evidently, "y=L(y_1f_1+\\dots + y_{r}f_{r})\\in {\\rm Im}\\,L".
Therefore, "{\\rm Im}\\,L=R".
2) Show that "{\\rm Ker}\\ L=K":
For any "x\\in K" if "x=x_{r+1}f_{r+1}+\\dots+x_nf_n" then "L(x)=0", i.e. "x\\in{\\rm Ker}\\ L" and, hence, "K\\subset {\\rm Ker}\\ L".
Conversely, if "L(x)=0" and "x=x_{1}f_{1}+\\dots+x_nf_n" then "L(x)=x_{1}e_1+\\dots +x_{r}e_{r}=0". Since Since "e_1, ..., e_{r}" is a basis for "R", they are linear independent, therefore "x_1=\\dots=x_r=0".
This implies that "x=x_{r+1}f_{r+1}+\\dots+x_nf_n\\in K" and, hence, "{\\rm Ker}\\ L\\subset K".
Therefore "{\\rm Ker}\\ L= K".
Comments
Leave a comment