Let r=dimR, then dimK=n−r.
Let e1,...,er be any basis for R.
This basis can be extended to a basis e1,…,er,er+1,…,em for W, where m=dimW.
Let fr+1,...,fn be any basis for K.
This basis can be extended to a basis f1,…,fr,fr+1,…,fn for V.
Define a linear transformation L:V→W by the rule:
L(a1f1+a2f2+⋯+anfn)=a1e1+⋯+arer
1) Show that ImL=R:
Since e1,...,er is a basis for R,
L(a1f1+⋯+anfn)=a1e1+⋯+arer∈R and ImL⊂R
For any y∈R if y=y1e1+⋯+yrer then, evidently, y=L(y1f1+⋯+yrfr)∈ImL.
Therefore, ImL=R.
2) Show that Ker L=K:
For any x∈K if x=xr+1fr+1+⋯+xnfn then L(x)=0, i.e. x∈Ker L and, hence, K⊂Ker L.
Conversely, if L(x)=0 and x=x1f1+⋯+xnfn then L(x)=x1e1+⋯+xrer=0. Since Since e1,...,er is a basis for R, they are linear independent, therefore x1=⋯=xr=0.
This implies that x=xr+1fr+1+⋯+xnfn∈K and, hence, Ker L⊂K.
Therefore Ker L=K.
Comments
Leave a comment