Answer:-
Let dimK=m and let {Ξ²1β,Ξ²2β,β¦,Ξ²mβ} be a basis of K . Then dimR=nβm .
Since KβV , it follows that vectors {Ξ²1β,Ξ²2β,β¦,Ξ²mβ} can be complemented to a basis of V .
So, let Ξ²={Ξ²1β,Ξ²2β,β¦,Ξ²nβ} be a basis of V .
Let Ξ³={Ξ³1β,Ξ³2β,β¦,Ξ³nβmβ} be a basis of R .
Now we define a linear transformation L:VβW for basis vectors:
LΞ²1β=β¦=LΞ²mβ=0 and LΞ²m+1β=Ξ³1β , β¦ , LΞ²nβ=Ξ³nβmβ .
For v=a1βΞ²1β+a2βΞ²2β+β¦+anβΞ²nββV we have Lv=am+1βΞ³1β+β¦+anβΞ³nβmβ
Im L={Lv β£ vβV}={am+1βΞ³1β+β¦+anβΞ³nβmββ£aiββF}=R
Lv=am+1βΞ³1β+β¦+anβΞ³nβmβ=0 if and only if am+1β=β¦=anβ=0 .
Therefore, Lv=0 only for v=a1βΞ²1β+β¦+amβΞ²mβ , where aiββF . It means that Ker L=K .
Comments