Question #219805

Let V and W be vector spaces over F, where V is n-dimensional. Let K ≤ V and R ≤ W

be finite-dimensional subspaces such that dim K + dim R = n. Prove that there exists a linear

transformation L : V −→ W such that ker L = K and Im L = R.


1
Expert's answer
2021-07-27T09:19:24-0400

Answer:-

Let dimK=m\dim K=m and let {β1,β2,,βm}\{\beta_1,\beta_2,…,\beta_m\} be a basis of KK . Then dimR=nm\dim R=n-m .

Since KVK\subseteq V , it follows that vectors {β1,β2,,βm}\{\beta_1,\beta_2,…,\beta_m\} can be complemented to a basis of VV .

So, let β={β1,β2,,βn}\beta= \{\beta_1,\beta_2,…,\beta_n\} be a basis of VV .

Let γ={γ1,γ2,,γnm}\gamma = \{\gamma_1,\gamma_2,…,\gamma_{n-m}\} be a basis of RR .

Now we define a linear transformation L:VWL:V\rightarrow W for basis vectors:

Lβ1==Lβm=0L\beta_1=…=L\beta_m=0 and Lβm+1=γ1L\beta_{m+1}=\gamma_1 , … , Lβn=γnmL\beta_n=\gamma_{n-m} .


For v=a1β1+a2β2++anβnVv =a_1\beta_1+a_2\beta_2+…+a_n\beta_n\in V we have Lv=am+1γ1++anγnmLv=a_{m+1}\gamma_1+…+a_{n}\gamma _{n-m}

Im L={Lv  vV}={am+1γ1++anγnmaiF}=R\text{Im} \ L=\{Lv\ |\ v\in V\}=\{a_{m+1}\gamma_1+…+a_{n}\gamma _{n-m}|a_i\in F\}=R


Lv=am+1γ1++anγnm=0Lv=a_{m+1}\gamma_1+…+a_{n}\gamma _{n-m}=0 if and only if am+1==an=0a_{m+1}=…=a_n=0 .

Therefore, Lv=0Lv=0 only for v=a1β1++amβmv=a_1\beta_1+…+a_m\beta_m , where aiFa_i\in F . It means that Ker L=K\text{Ker}\ L=K .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS