z=z2z1z1=tanθ+iz2=z1ˉ=(tanθ+i)ˉ=tanθ−iz=z2z1=tanθ−itanθ+iz=tanθ−itanθ+i∗tanθ+itanθ+iSimplifyingz=tan2θ+1tan2θ+i2+2tanθiz=sec2θtan2θ−1+2tanθiz=cos2θ1cos2θsin2θ−1+2cosθsinθiz=cos2θ1∗cos2θsin2θ−cos2θ+2sinθcosθiz=−cos2θ+sin2θiHenceeiθ=cosθ+isinθe−iθ=cosθ−isinθ⟹ei2θ=cos2θ+isin2θ e−iθ=cos2θ−isin2θAdding themcos2θ=2ei2θ−e−i2θAlso,sin2θ=2iei2θ−e−i2θz=2ei2θ−e−i2θ+2iei2θ−e−i2θz=−ei2θ∴zn=(−ei2θ)n=(−)nei2nθ
Comments
Leave a comment