Let V and W be vector spaces over F, where V is n-dimensional. Let K ≤ V and R ≤ W
be finite-dimensional subspaces such that dim K + dim R = n. Prove that there exists a linear
transformation L : V −→ W such that ker L = K and Im L = R.
Let "\\dim K=m" and let "\\{\\beta_1,\\beta_2,\u2026,\\beta_m\\}" be a basis of "K" . Then "\\dim R=n-m" .
Since "K\\subseteq V" , it follows that vectors "\\{\\beta_1,\\beta_2,\u2026,\\beta_m\\}" can be complemented to a basis of "V" .
So, let "\\beta= \\{\\beta_1,\\beta_2,\u2026,\\beta_n\\}" be a basis of "V" .
Let "\\gamma = \\{\\gamma_1,\\gamma_2,\u2026,\\gamma_{n-m}\\}" be a basis of "R" .
Now we define a linear transformation "L:V\\rightarrow W" for basis vectors:
"L\\beta_1=\u2026=L\\beta_m=0" and "L\\beta_{m+1}=\\gamma_1" , … , "L\\beta_n=\\gamma_{n-m}" .
For "v =a_1\\beta_1+a_2\\beta_2+\u2026+a_n\\beta_n\\in V" we have "Lv=a_{m+1}\\gamma_1+\u2026+a_{n}\\gamma _{n-m}"
"\\text{Im} \\ L=\\{Lv\\ |\\ v\\in V\\}=\\{a_{m+1}\\gamma_1+\u2026+a_{n}\\gamma _{n-m}|a_i\\in F\\}=R"
"Lv=a_{m+1}\\gamma_1+\u2026+a_{n}\\gamma _{n-m}=0" if and only if "a_{m+1}=\u2026=a_n=0" .
Therefore, "Lv=0" only for "v=a_1\\beta_1+\u2026+a_m\\beta_m" , where "a_i\\in F" . It means that "\\text{Ker}\\ L=K" .
Comments
Leave a comment