Question #220896
Reduce the quadratic form 3x2 + 2y2 + 3z2 - 2xy - 2yz into a canonical
form using an orthogonal transformation.
1
Expert's answer
2021-07-29T15:16:40-0400

Answer:-

The matrix of this quadratic form is

(310121013)\begin{pmatrix} 3 & -1 & 0\\ -1 & 2 &-1\\ 0 & -1 &3 \end{pmatrix}

We have to find its eigenvalues and eigenvectors.

det3x1012x1013x=(3x)2(2x)2(3x)\det\begin{vmatrix} 3-x & -1 & 0\\ -1 & 2-x &-1\\ 0 & -1 & 3-x \end{vmatrix}=(3-x)^2(2-x)-2(3-x)

=(3x)((3x)(2x)2)=(3x)(x25x+4)=(3x)(x1)(x4)=(3-x)((3-x)(2-x)-2)=(3-x)(x^2-5x+4)=(3-x)(x-1)(x-4)

Therefore, the eigenvalues are 1, 3 and 4.

1) Consider the eigenvalue 1:

(311012110131)(xyz)=(000)\begin{pmatrix} 3-1 & -1 & 0\\ -1 & 2-1 &-1\\ 0 & -1 & 3-1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}

(210111012)(xyz)=(000)\begin{pmatrix} 2 & -1 & 0\\ -1 &1 &-1\\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}

2xy=02x-y=02zy=02z-y=0, therefore, the eigenvector is

(xyz)=(212)\begin{pmatrix} x\\ y\\ z \end{pmatrix}= \begin{pmatrix} 2\\ 1\\ 2 \end{pmatrix}

Its norm is 22+12+22=3\sqrt{2^2+1^2+2^2}=3. Therefore, the normalized eigenvector, corressponding to the eigenvalue 1, is (xyz)=(2/31/32/3)\begin{pmatrix} x\\ y\\ z \end{pmatrix}= \begin{pmatrix} 2/3\\ 1/3\\ 2/3 \end{pmatrix}.

2) Consider the eigenvalue 3:

(331012310133)(xyz)=(000)\begin{pmatrix} 3-3 & -1 & 0\\ -1 & 2-3 &-1\\ 0 & -1 & 3-3 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}

(010111010)(xyz)=(000)\begin{pmatrix} 0 & -1 & 0\\ -1 &-1 &-1\\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}

y=0-y=0xyz=0-x-y-z=0, therefore, the eigenvector is

(xyz)=(101)\begin{pmatrix} x\\ y\\ z \end{pmatrix}= \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix}

Its norm is 12+02+(1)2=2\sqrt{1^2+0^2+(-1)^2}=\sqrt{2}. Therefore, the normalized eigenvector, corressponding to the eigenvalue 3, is (1/201/2)\begin{pmatrix} 1/\sqrt{2}\\ 0\\ -1/\sqrt{2} \end{pmatrix}.

3) Consider the eigenvalue 4:

(341012410134)(xyz)=(000)\begin{pmatrix} 3-4 & -1 & 0\\ -1 & 2-4 &-1\\ 0 & -1 & 3-4 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}

(110121011)(xyz)=(000)\begin{pmatrix} -1 & -1 & 0\\ -1 &-2 &-1\\ 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}

xy=0-x-y=0yz=0-y-z=0, therefore, the eigenvector is

(xyz)=(111)\begin{pmatrix} x\\ y\\ z \end{pmatrix}= \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}

Its norm is 12+(1)2+12=3\sqrt{1^2+(-1)^2+1^2}=\sqrt{3}. Therefore, the normalized eigenvector, corressponding to the eigenvalue 3, is (1/31/31/3)\begin{pmatrix} 1/\sqrt{3}\\ -1/\sqrt{3}\\ 1/\sqrt{3} \end{pmatrix}.

By the construction we have

(310121013)(2/31/21/31/301/32/31/21/3)=\begin{pmatrix} 3 & -1 & 0\\ -1 & 2 &-1\\ 0 & -1 &3 \end{pmatrix}\begin{pmatrix} 2/ 3 & 1/\sqrt{2} & 1/\sqrt{3}\\ 1/3 & 0 &-1/\sqrt{3}\\ 2/3 & -1/\sqrt{2} &1/\sqrt{3} \end{pmatrix}=

=(2/31/21/31/301/32/31/21/3)(100030004)=\begin{pmatrix} 2/ 3 & 1/\sqrt{2} & 1/\sqrt{3}\\ 1/3 & 0 &-1/\sqrt{3}\\ 2/3 & -1/\sqrt{2} &1/\sqrt{3} \end{pmatrix}\begin{pmatrix} 1 & 0 & 0\\ 0 & 3 &0\\ 0 & 0 &4 \end{pmatrix}

and

3x2+2y2+3z22xy2yz=(xyz)(310121013)(xyz)=3x^2+2y^2+3z^2-2xy-2yz=\begin{pmatrix} x &y & z \end{pmatrix}\begin{pmatrix} 3 & -1 & 0\\ -1 & 2 &-1\\ 0 & -1 &3 \end{pmatrix}\begin{pmatrix} x\\ y\\ z \end{pmatrix}=

(xyz)(2/31/21/31/301/32/31/21/3)(100030004)(2/31/21/31/301/32/31/21/3)1(xyz)\begin{pmatrix} x &y & z \end{pmatrix}\begin{pmatrix} 2/ 3 & 1/\sqrt{2} & 1/\sqrt{3}\\ 1/3 & 0 &-1/\sqrt{3}\\ 2/3 & -1/\sqrt{2} &1/\sqrt{3} \end{pmatrix}\begin{pmatrix} 1 & 0 & 0\\ 0 & 3 &0\\ 0 & 0 &4 \end{pmatrix}\begin{pmatrix} 2/ 3 & 1/\sqrt{2} & 1/\sqrt{3}\\ 1/3 & 0 &-1/\sqrt{3}\\ 2/3 & -1/\sqrt{2} &1/\sqrt{3} \end{pmatrix}^{-1}\begin{pmatrix} x\\ y\\ z \end{pmatrix}

But the matrix

(2/31/21/31/301/32/31/21/3)\begin{pmatrix} 2/ 3 & 1/\sqrt{2} & 1/\sqrt{3}\\ 1/3 & 0 &-1/\sqrt{3}\\ 2/3 & -1/\sqrt{2} &1/\sqrt{3} \end{pmatrix} is orthogonal, since it is composed with the orthonormal eigenvectors of the symmetric matrice. therefore

(2/31/21/31/301/32/31/21/3)1=(2/31/21/31/301/32/31/21/3)T\begin{pmatrix} 2/ 3 & 1/\sqrt{2} & 1/\sqrt{3}\\ 1/3 & 0 &-1/\sqrt{3}\\ 2/3 & -1/\sqrt{2} &1/\sqrt{3} \end{pmatrix}^{-1}=\begin{pmatrix} 2/ 3 & 1/\sqrt{2} & 1/\sqrt{3}\\ 1/3 & 0 &-1/\sqrt{3}\\ 2/3 & -1/\sqrt{2} &1/\sqrt{3} \end{pmatrix}^{T}

=(2/31/21/31/301/32/31/21/3)=\begin{pmatrix} 2/ 3 & 1/\sqrt{2} & 1/\sqrt{3}\\ 1/3 & 0 &-1/\sqrt{3}\\ 2/3 & -1/\sqrt{2} &1/\sqrt{3} \end{pmatrix}

Put

(2/31/21/31/301/32/31/21/3)(xyz)=(XYZ)\begin{pmatrix} 2/ 3 & 1/\sqrt{2} & 1/\sqrt{3}\\ 1/3 & 0 &-1/\sqrt{3}\\ 2/3 & -1/\sqrt{2} &1/\sqrt{3} \end{pmatrix}\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} X\\ Y\\ Z \end{pmatrix}

then

3x2+2y2+3z22xy2yz=(XYZ)(100030004)(XYZ)=X2+3Y2+4Z23x^2+2y^2+3z^2-2xy-2yz=(X\,Y\,Z)\begin{pmatrix} 1 & 0 & 0\\ 0 & 3 &0\\ 0 & 0 &4 \end{pmatrix}\begin{pmatrix} X\\ Y\\ Z \end{pmatrix}=X^2+3Y^2+4Z^2

And we reduce the given quadratic form to the canonical form by orthogonal transformation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS