Let 
A = ( a b c d ) A=\begin{pmatrix}
   a & b \\
   c & d
\end{pmatrix} A = ( a c  b d  ) 
 
∣ a − λ b c d − λ ∣ = 0 \begin{vmatrix}
   a-\lambda & b \\
   c & d-\lambda
\end{vmatrix}=0 ∣ ∣  a − λ c  b d − λ  ∣ ∣  = 0  
( a − λ ) ( d − λ ) − b c = 0 (a-\lambda)(d-\lambda)-bc=0 ( a − λ ) ( d − λ ) − b c = 0  
λ 2 − ( a + d ) λ + a d − b c = 0 \lambda^2-(a+d)\lambda+ad-bc=0 λ 2 − ( a + d ) λ + a d − b c = 0 
 λ 1 = 1 , v 1 = ( 1 − 3 ) \lambda_1=1, v_1=\begin{pmatrix}
   1 \\
   -3
\end{pmatrix} λ 1  = 1 , v 1  = ( 1 − 3  ) 
 
λ 2 = 5 , v 1 = ( 1 1 ) \lambda_2=5, v_1=\begin{pmatrix}
   1 \\
   1
\end{pmatrix} λ 2  = 5 , v 1  = ( 1 1  ) 
By Vieta Theorem
a + d = 1 + 5 a+d=1+5 a + d = 1 + 5  
a d − b c = 1 ( 5 ) ad-bc=1(5) a d − b c = 1 ( 5 )  
A v i = λ i v i , i = 1 , 2 Av_i=\lambda_iv_i, i=1,2 A v i  = λ i  v i  , i = 1 , 2  
( a − 1 b c d − 1 ) ( 1 − 3 ) = ( 0 0 ) \begin{pmatrix}
   a-1 & b \\
   c & d-1
\end{pmatrix}\begin{pmatrix}
   1 \\
   -3
\end{pmatrix}=\begin{pmatrix}
   0 \\
   0
\end{pmatrix} ( a − 1 c  b d − 1  ) ( 1 − 3  ) = ( 0 0  )  
a − 1 − 3 b = 0 a-1-3b=0 a − 1 − 3 b = 0 c − 3 d + 3 = 0 c-3d+3=0 c − 3 d + 3 = 0  
a = 3 b + 1 a=3b+1 a = 3 b + 1 c = 3 d − 3 c=3d-3 c = 3 d − 3  
( a − 5 b c d − 5 ) ( 1 1 ) = ( 0 0 ) \begin{pmatrix}
   a-5 & b \\
   c & d-5
\end{pmatrix}\begin{pmatrix}
   1 \\
   1
\end{pmatrix}=\begin{pmatrix}
   0 \\
   0
\end{pmatrix} ( a − 5 c  b d − 5  ) ( 1 1  ) = ( 0 0  )  
a − 5 + b = 0 a-5+b=0 a − 5 + b = 0 c + d − 5 = 0 c+d-5=0 c + d − 5 = 0  
a = − b + 5 a=-b+5 a = − b + 5 c = − d + 5 c=-d+5 c = − d + 5  
3 b + 1 = − b + 5 = > b = 1 , a = 4 3b+1=-b+5=>b=1, a=4 3 b + 1 = − b + 5 => b = 1 , a = 4  
3 d − 3 = − d + 5 = > d = 2 , c = 3 3d-3=-d+5=>d=2, c=3 3 d − 3 = − d + 5 => d = 2 , c = 3  
A = ( 4 1 3 2 ) A=\begin{pmatrix}
   4 & 1 \\
   3 & 2
\end{pmatrix} A = ( 4 3  1 2  )  
P = ( 1 1 − 3 1 ) , P − 1 = ( 0.25 − 0.25 0.75 0.25 ) P=\begin{pmatrix}
   1 & 1 \\
   -3 & 1
\end{pmatrix}, P^{-1}=\begin{pmatrix}
   0.25 & -0.25 \\
   0.75 & 0.25
\end{pmatrix} P = ( 1 − 3  1 1  ) , P − 1 = ( 0.25 0.75  − 0.25 0.25  )  
D = P − 1 A P D=P^{-1}AP D = P − 1 A P  
D = ( 1 0 0 5 ) D=\begin{pmatrix}
   1 & 0 \\
   0 & 5
\end{pmatrix} D = ( 1 0  0 5  )  
Comments