Answer to Question #216168 in Linear Algebra for Chris

Question #216168

Given that matrix A has 1has the eigenvalue with the corresponding eigenvector (1,-3) and 5 as the second eigenvalue with (1,1) as the corresponding eigenvector. (I) find the matrix A (Ii) D the diagonal matrix such that P^-1 AP=D


1
Expert's answer
2021-07-12T16:08:01-0400

Let

A=(abcd)A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}


aλbcdλ=0\begin{vmatrix} a-\lambda & b \\ c & d-\lambda \end{vmatrix}=0

(aλ)(dλ)bc=0(a-\lambda)(d-\lambda)-bc=0

λ2(a+d)λ+adbc=0\lambda^2-(a+d)\lambda+ad-bc=0


λ1=1,v1=(13)\lambda_1=1, v_1=\begin{pmatrix} 1 \\ -3 \end{pmatrix}

λ2=5,v1=(11)\lambda_2=5, v_1=\begin{pmatrix} 1 \\ 1 \end{pmatrix}

By Vieta Theorem


a+d=1+5a+d=1+5

adbc=1(5)ad-bc=1(5)

Avi=λivi,i=1,2Av_i=\lambda_iv_i, i=1,2

(a1bcd1)(13)=(00)\begin{pmatrix} a-1 & b \\ c & d-1 \end{pmatrix}\begin{pmatrix} 1 \\ -3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \end{pmatrix}

a13b=0a-1-3b=0c3d+3=0c-3d+3=0

a=3b+1a=3b+1c=3d3c=3d-3


(a5bcd5)(11)=(00)\begin{pmatrix} a-5 & b \\ c & d-5 \end{pmatrix}\begin{pmatrix} 1 \\ 1 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \end{pmatrix}

a5+b=0a-5+b=0c+d5=0c+d-5=0

a=b+5a=-b+5c=d+5c=-d+5

3b+1=b+5=>b=1,a=43b+1=-b+5=>b=1, a=4

3d3=d+5=>d=2,c=33d-3=-d+5=>d=2, c=3

A=(4132)A=\begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}

P=(1131),P1=(0.250.250.750.25)P=\begin{pmatrix} 1 & 1 \\ -3 & 1 \end{pmatrix}, P^{-1}=\begin{pmatrix} 0.25 & -0.25 \\ 0.75 & 0.25 \end{pmatrix}

D=P1APD=P^{-1}AP

D=(1005)D=\begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment