Let
A = ( a b c d ) A=\begin{pmatrix}
a & b \\
c & d
\end{pmatrix} A = ( a c b d )
∣ a − λ b c d − λ ∣ = 0 \begin{vmatrix}
a-\lambda & b \\
c & d-\lambda
\end{vmatrix}=0 ∣ ∣ a − λ c b d − λ ∣ ∣ = 0
( a − λ ) ( d − λ ) − b c = 0 (a-\lambda)(d-\lambda)-bc=0 ( a − λ ) ( d − λ ) − b c = 0
λ 2 − ( a + d ) λ + a d − b c = 0 \lambda^2-(a+d)\lambda+ad-bc=0 λ 2 − ( a + d ) λ + a d − b c = 0
λ 1 = 1 , v 1 = ( 1 − 3 ) \lambda_1=1, v_1=\begin{pmatrix}
1 \\
-3
\end{pmatrix} λ 1 = 1 , v 1 = ( 1 − 3 )
λ 2 = 5 , v 1 = ( 1 1 ) \lambda_2=5, v_1=\begin{pmatrix}
1 \\
1
\end{pmatrix} λ 2 = 5 , v 1 = ( 1 1 )
By Vieta Theorem
a + d = 1 + 5 a+d=1+5 a + d = 1 + 5
a d − b c = 1 ( 5 ) ad-bc=1(5) a d − b c = 1 ( 5 )
A v i = λ i v i , i = 1 , 2 Av_i=\lambda_iv_i, i=1,2 A v i = λ i v i , i = 1 , 2
( a − 1 b c d − 1 ) ( 1 − 3 ) = ( 0 0 ) \begin{pmatrix}
a-1 & b \\
c & d-1
\end{pmatrix}\begin{pmatrix}
1 \\
-3
\end{pmatrix}=\begin{pmatrix}
0 \\
0
\end{pmatrix} ( a − 1 c b d − 1 ) ( 1 − 3 ) = ( 0 0 )
a − 1 − 3 b = 0 a-1-3b=0 a − 1 − 3 b = 0 c − 3 d + 3 = 0 c-3d+3=0 c − 3 d + 3 = 0
a = 3 b + 1 a=3b+1 a = 3 b + 1 c = 3 d − 3 c=3d-3 c = 3 d − 3
( a − 5 b c d − 5 ) ( 1 1 ) = ( 0 0 ) \begin{pmatrix}
a-5 & b \\
c & d-5
\end{pmatrix}\begin{pmatrix}
1 \\
1
\end{pmatrix}=\begin{pmatrix}
0 \\
0
\end{pmatrix} ( a − 5 c b d − 5 ) ( 1 1 ) = ( 0 0 )
a − 5 + b = 0 a-5+b=0 a − 5 + b = 0 c + d − 5 = 0 c+d-5=0 c + d − 5 = 0
a = − b + 5 a=-b+5 a = − b + 5 c = − d + 5 c=-d+5 c = − d + 5
3 b + 1 = − b + 5 = > b = 1 , a = 4 3b+1=-b+5=>b=1, a=4 3 b + 1 = − b + 5 => b = 1 , a = 4
3 d − 3 = − d + 5 = > d = 2 , c = 3 3d-3=-d+5=>d=2, c=3 3 d − 3 = − d + 5 => d = 2 , c = 3
A = ( 4 1 3 2 ) A=\begin{pmatrix}
4 & 1 \\
3 & 2
\end{pmatrix} A = ( 4 3 1 2 )
P = ( 1 1 − 3 1 ) , P − 1 = ( 0.25 − 0.25 0.75 0.25 ) P=\begin{pmatrix}
1 & 1 \\
-3 & 1
\end{pmatrix}, P^{-1}=\begin{pmatrix}
0.25 & -0.25 \\
0.75 & 0.25
\end{pmatrix} P = ( 1 − 3 1 1 ) , P − 1 = ( 0.25 0.75 − 0.25 0.25 )
D = P − 1 A P D=P^{-1}AP D = P − 1 A P
D = ( 1 0 0 5 ) D=\begin{pmatrix}
1 & 0 \\
0 & 5
\end{pmatrix} D = ( 1 0 0 5 )
Comments
Leave a comment