Let e1,e2,…,en be a basis for V. Then there exist positive integers k1,k2,…,kn such that Tkiei=0 for all i=1,2,…,n. Put k=max{k1,k2,…,kn}.
Consider any vector v=a1e1+a2e2+⋯+anen∈V.
Tkv=a1Tke1+a2Tke2+⋯+anTken=
=a1Tk−k1(Tk1e1)+a2Tk−k2(Tk2e2)+⋯+anTk−kn(Tknen)=0
Therefore, Tk=0, and that means that T is a nilpotent operator.
Comments
Leave a comment