Answer to Question #215532 in Linear Algebra for Sujata

Question #215532

If dim V


1
Expert's answer
2021-07-12T18:55:42-0400

Let e1,e2,,ene_1, e_2,\dots,e_n be a basis for V. Then there exist positive integers k1,k2,,knk_1,k_2,\dots,k_n such that Tkiei=0T^{k_i}e_i=0 for all i=1,2,,ni=1,2,\dots,n. Put k=max{k1,k2,,kn}k=\max\{k_1,k_2,\dots,k_n\}.

Consider any vector v=a1e1+a2e2++anenVv=a_1e_1+a_2e_2+\dots+a_ne_n\in V.

Tkv=a1Tke1+a2Tke2++anTken=T^kv=a_1T^ke_1+a_2T^ke_2+\dots+a_nT^ke_n=

=a1Tkk1(Tk1e1)+a2Tkk2(Tk2e2)++anTkkn(Tknen)=0=a_1T^{k-k_1}(T^{k_1}e_1)+a_2T^{k-k_2}(T^{k_2}e_2)+\dots+a_nT^{k-k_n}(T^{k_n}e_n)=0

Therefore, Tk=0T^k=0, and that means that T is a nilpotent operator.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment