Question #215422

Suppose T € L(V ) and dim range T =k. Prove that T has at most k + 1distinct eigenvalues.


1
Expert's answer
2021-08-19T12:40:03-0400

Since dim(V ) < ∞, T has at most a finite number of distinct eigenvalues.Let λ1,...,λm be the distinct eigenvalues of T, and let:v1,...,vmbe corresponding nonzero eigenvectors.If λj0, then T(vj/λj)=vjSince at most one of λ1,...,λm equals 0, this implies that at least m − 1 of the vectors v1,...,vm are in range(T). These vectors are linearly independent, which implies that m1dim(rangeT)=k.Thus mk+1, as desired.\text{Since dim(V ) < ∞, T has at most a finite number of distinct eigenvalues.}\\ \text{Let $λ_1, . . . , λ_m$ be the distinct eigenvalues of T, and let}:\\ v_1, . . . , v_m \text{be corresponding nonzero eigenvectors.}\\ \text{If $λ_j \neq 0,$ then $T(v_j/λ_j ) = v_j$}\\ \text{Since at most one of $λ_1, . . . , λ_m $ equals 0, this implies that at least m − 1 of the vectors $v_1, . . . , v_m$ are in range(T)}.\\ \text{ These vectors are linearly independent, which implies that $m −1 ≤ dim(rangeT) = k.$}\\ \text{Thus $m ≤ k + 1$, as desired.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS