Let A=(e1,e2,e3), B=(f1,f2,f3) be two bases for the vector space V.
The fact that A=(aij) is the matrix of linear transformation T relative to the basis A means that:
Te1=a11e1+a21e2+a31e3
Te2=a12e1+a22e2+a32e3
Te3=a13e1+a23e2+a33e3
The fact that B=(bij) is the matrix of linear transformation T relative to the basis B means that:
Tf1=b11f1+b21f2+b31f3
Tf2=b12f1+b22f2+b32f3
Tf3=b13f1+b23f2+b33f3
Let C be the change-of-basis matrix:
e1=c11f1+c21f2+c31f3=i=1∑3ci1fi
e2=c12f1+c22f2+c32f3=i=1∑3ci2fi
e3=c13f1+c23f2+c33f3=i=1∑3ci3fi
In general, ej=i=1∑3cijfi.
Then
Tej=i=1∑3cijTfi=i=1∑3cijk=1∑3bkifk=k=1∑3fki=1∑3cijbki
From the other side
Tej=i=1∑3aijei=i=1∑3aijk=1∑3ckifk=k=1∑3fki=1∑3aijcki
Comparing these two formulas, we obtain
i=1∑3cijbki=i=1∑3aijcki
In matrices: BC=CA or B=CAC−1. This means that the matrices A and B are similar.
Comments