Question #215530

T be a linear transformation on V and A and B be two ordered bases for V and A is the matrix of T relative to A and B is the matrix of T relative to B then prove that A and B are similar.


1
Expert's answer
2021-07-12T13:10:04-0400

Let A=(e1,e2,e3)\mathfrak{A}=(e_1, e_2,e_3), B=(f1,f2,f3)\mathfrak{B}=(f_1, f_2, f_3) be two bases for the vector space V.

The fact that A=(aij)A=(a_{ij}) is the matrix of linear transformation T relative to the basis A\mathfrak{A} means that:

Te1=a11e1+a21e2+a31e3Te_1=a_{11}e_1+a_{21}e_2+a_{31}e_3

Te2=a12e1+a22e2+a32e3Te_2=a_{12}e_1+a_{22}e_2+a_{32}e_3

Te3=a13e1+a23e2+a33e3Te_3=a_{13}e_1+a_{23}e_2+a_{33}e_3

The fact that B=(bij)B=(b_{ij}) is the matrix of linear transformation T relative to the basis B\mathfrak{B} means that:

Tf1=b11f1+b21f2+b31f3Tf_1=b_{11}f_1+b_{21}f_2+b_{31}f_3

Tf2=b12f1+b22f2+b32f3Tf_2=b_{12}f_1+b_{22}f_2+b_{32}f_3

Tf3=b13f1+b23f2+b33f3Tf_3=b_{13}f_1+b_{23}f_2+b_{33}f_3

Let C be the change-of-basis matrix:

e1=c11f1+c21f2+c31f3=i=13ci1fie_1=c_{11}f_1+c_{21}f_2+c_{31}f_3=\sum\limits_{i=1}^{3}c_{i1}f_i

e2=c12f1+c22f2+c32f3=i=13ci2fie_2=c_{12}f_1+c_{22}f_2+c_{32}f_3=\sum\limits_{i=1}^{3}c_{i2}f_i

e3=c13f1+c23f2+c33f3=i=13ci3fie_3=c_{13}f_1+c_{23}f_2+c_{33}f_3=\sum\limits_{i=1}^{3}c_{i3}f_i

In general, ej=i=13cijfie_j=\sum\limits_{i=1}^{3}c_{ij}f_i.

Then

Tej=i=13cijTfi=i=13cijk=13bkifk=k=13fki=13cijbkiTe_j=\sum\limits_{i=1}^{3}c_{ij}Tf_i=\sum\limits_{i=1}^{3}c_{ij}\sum\limits_{k=1}^{3}b_{ki}f_k=\sum\limits_{k=1}^{3}f_k\sum\limits_{i=1}^{3}c_{ij}b_{ki}

From the other side

Tej=i=13aijei=i=13aijk=13ckifk=k=13fki=13aijckiTe_j=\sum\limits_{i=1}^{3}a_{ij}e_i=\sum\limits_{i=1}^{3}a_{ij}\sum\limits_{k=1}^{3}c_{ki}f_k=\sum\limits_{k=1}^{3}f_k\sum\limits_{i=1}^{3}a_{ij}c_{ki}

Comparing these two formulas, we obtain

i=13cijbki=i=13aijcki\sum\limits_{i=1}^{3}c_{ij}b_{ki}=\sum\limits_{i=1}^{3}a_{ij}c_{ki}

In matrices: BC=CA or B=CAC1B=CAC^{-1}. This means that the matrices A and B are similar.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS