Answer to Question #215211 in Linear Algebra for Majhar

Question #215211

Give an example, with justification, of a 

skew-Hermitian operator on C2.



1
Expert's answer
2021-07-12T07:14:24-0400


Let there be a matrix A



A = [i1i21i3ii2i0]\begin{bmatrix} i &1-i & 2\\ -1-i & 3i & i\\ -2& i & 0 \end{bmatrix}


Now A is skew Hermitian only if



( A* )T = - A



Now we take the Conjugate of A and that is given as


A[i1+i21+i3ii2i0]\begin{bmatrix} -i & 1+i& 2\\ -1+i & -3i & -i\\ -2&-i&0 \end{bmatrix}




On taking the transpose of above we have



( A)T = [i1+i21+i3ii2i0]\begin{bmatrix} -i & -1+i & -2\\ 1+i &-3i & -i\\ 2&-i&0 \end{bmatrix}




Now,


- A = [i1+i21+i3ii2i0]\begin{bmatrix} -i & -1+i & -2\\ 1+i &-3i & -i\\ 2&-i&0 \end{bmatrix}




On comparing ( A* )T and - A we see that


( A* )T = - A


Hence, A is a skew Hermitian matrix.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment