Find the characteristic equation of the matrix A =
2 1 1
0 1 0
1 1 2
and hence find the matrix
represented by A8 − 5A7 + 7A6 − 3A5 + A4 − 5A3 + 8A2 − 2A + I.
Characteristic equation "\\det(A-\\lambda I)=0"
"(2-\\lambda)^2(1-\\lambda)-(1-\\lambda)=0"
"(1-\\lambda)(4-4\\lambda+\\lambda^2-1)=0"
"(1-\\lambda)^2(3-\\lambda)=0"
"\\lambda_1=1, \\lambda_2=1, \\lambda_3=3"
The equation can be written as
According to Cayley Hamilton theorem, every matrix is the root of it's eigen matrix. Then
Given sum
This sum can be written as,
"= (A^3 - 5A^2+7A -3)(A^5+A) + (A^2+A+I)"
Since "A^3-5A^2+7A-3=0," then
"=A^2+A+I"
"A^2=\\begin{bmatrix}\n 2 & 1 & 1 \\\\\n 0 & 1 & 0 \\\\\n 1 & 1 & 2 \\\\\n\\end{bmatrix}\\begin{bmatrix}\n 2 & 1 & 1 \\\\\n 0 & 1 & 0 \\\\\n 1 & 1 & 2 \\\\\n\\end{bmatrix}"
"=\\begin{bmatrix}\n 4+0+1 & 2+1+1 & 2+0+2 \\\\\n 0+0+0 & 0+1+0 & 0+0+0 \\\\\n 2+0+2 & 1+1+2 & 1+0+4 \\\\\n\\end{bmatrix}"
"=\\begin{bmatrix}\n 5 & 4 & 4 \\\\\n 0 & 1 & 0 \\\\\n 4 & 4 & 5 \\\\\n\\end{bmatrix}"
"=A^2+A+I"
"=\\begin{bmatrix}\n 5 & 4 & 4 \\\\\n 0 & 1 & 0 \\\\\n 4 & 4 & 5 \\\\\n\\end{bmatrix}+\\begin{bmatrix}\n 2 & 1 & 1 \\\\\n 0 & 1 & 0 \\\\\n 1 & 1 & 2 \\\\\n\\end{bmatrix}+\\begin{bmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 1 \\\\\n\\end{bmatrix}"
Comments
Leave a comment