Suppose u; v € V. Prove that
||au + bv|| = ||bu +
av|| for all a; b € R if and only if ||u|| = ||
v||
.
"\\vec{u}=x_1i+y_1j\\\\ and\\\\ \\vec{v}=x_2i+y_2j\\\\ a\\vec{u}=ax_1i+ay_1j\\\\ b\\vec{v}=bx_2i+by_2j\\\\ a\\vec{u}+b\\vec{v}=bx_2i+by_2j +ax_1i+ay_1j\\\\ a\\vec{u}+b\\vec{v}=(ax_1+bx_2)i+(ay_1+by_2)j\\\\ \\|a\\vec{u}+b\\vec{v}\\|=\\\\\\sqrt{(ax_1+bx_2)^2+(ay_1+by_2)^2}\\\\ b\\vec{u}=bx_1i+by_1j\\\\ a\\vec{v}=ax_2i+ay_2j\\\\ b\\vec{u}+a\\vec{v}=(bx_1+ax_2)i+(by_1+ay_2)j\\\\ \\|b\\vec{u}+a\\vec{v}\\|=\\sqrt{(bx_1+ax_2)^2+(by_1+ay_2)^2}\\\\ \\|b\\vec{u}+a\\vec{v}\\|=\\|a\\vec{u}+b\\vec{v}\\|\\\\ \\sqrt{(ax_1+bx_2)^2+(ay_1+by_2)^2}=\\\\\\sqrt{(bx_1+ax_2)^2+(by_1+ay_2)^2}\\\\ (ax_1+bx_2)^2+(ay_1+by_2)^2=\\\\(bx_1+ax_2)^2+(by_1+ay_2)^2\\\\ (ax_1+bx_2)^2-(bx_1+ax_2)^2=\\\\(by_1+ay_2)^2-(ay_1+by_2)^2\\\\ (ax_1+bx_2+bx_1+ax_2)(ax_1+bx_2-bx_1-ax_2)\\\\ =(by_1+ay_2+ay_1+by_2)(by_1+ay_2-ay_1-by_2)\\\\ ((a+b)x_1+(a+b)x_2)((a-b)x_1-(a-b)x_2)=\\\\((a+b)y_1+(a+b)y_2)((b-a)y_1-(b-a)y_2)\\\\ (a^2-b^2)(x_1^2-x_2^2)=-(a^2-b^2)(y_1^2-y_2^2)\\\\ (x_1^2-x_2^2)=-(y_1^2-y_2^2)\\\\ (x_1^2-x_2^2)=-y_1^2+y_2^2\\\\ (x_1^2+y_1^2)=(x_2^2+y_2^2)\\\\ \\sqrt{(x_1^2+y_1^2)}=\\sqrt{(x_2^2+y_2^2)}\\\\ \\therefore\\\\ \\|\\vec{u_1}\\|=\\|\\vec{v_1}\\|"
Comments
Leave a comment