Answer to Question #214313 in Linear Algebra for person1

Question #214313

Let V and W be two vector spaces over the field F and T, T1, T2 be linear transformations from V to W. Prove the following:

(a) rank(αT) = rank(T), for all α ∈ F and α 6= 0.

(b) |rank(T1) − rank(T2)| ≤ rank(T1 + T2) ≤ rank(T1) + rank(T2


1
Expert's answer
2021-07-07T07:27:39-0400
  • For α0\alpha\neq 0 we have Range(T)=Range(αT)\text{Range} (T)=\text{Range}(\alpha T), as for any yRange(T)y\in \text{Range}(T) there is xVx\in V such that Tx=yTx=y. Now as FF is a field, α1\alpha^{-1} exists and thus αT(α1x)=αα1Tx=y\alpha T(\alpha^{-1}x)=\alpha \alpha^{-1}Tx=y by linearity of TT and thus yRange(αT)y\in \text{Range}(\alpha T) and Range(T)Range(αT)\text{Range}(T)\subseteq \text{Range}(\alpha T) . We can apply the same argument to the other inclusion to conclude that Range(T)=Range(αT)\text{Range}(T)=\text{Range}(\alpha T) and thus rg(T)=rg(αT)rg(T)=rg (\alpha T).
  • Let us first prove the right inequality. We have (T1+T2)(x)=T1(x)+T2(x)(T_1+T_2)(x)=T_1(x)+T_2(x) and thus Range(T1+T2)Range(T1)+Range(T2)\text{Range}(T_1+T_2)\subseteq \text{Range}(T_1)+\text{Range}(T_2), where plus on the right is the plus in the sense of vector subspaces of WW. As dim(A+B)dim(A)+dim(B)\dim(A+B)\leq \dim(A)+\dim(B) for A,BA,B vector spaces, we conclude that rg(T1+T2)dim(Range(T1)+Range(T2))rg(T1)+rg(T2)rg(T_1+T_2)\leq \dim(\text{Range}(T_1)+\text{Range}(T_2))\leq rg(T_1)+rg(T_2).

Now to find the left inequality, we just need to use the inequality we just found by replacing T2T_2 by T2-T_2 and T1T_1 by T1+T2T_1+T_2 : rg(T1+T2T2)rg(T1+T2)+rg(T2)rg(T_1+T_2-T_2)\leq rg(T_1+T_2)+rg(-T_2). Now as 10-1\neq 0 in FF, we have rg(T2)=rg(T2)rg(-T_2)=rg(T_2) and therefore rg(T1)rg(T1+T2)+rg(T2)rg(T_1)\leq rg(T_1+T_2)+rg(T_2) or we can rewrite it as rg(T1)rg(T2)rg(T1+T2)rg(T_1)-rg(T_2)\leq rg(T_1+T_2). Applying the same symmetric argument to T1-T_1 and T1+T2T_1+T_2 we find that rg(T2)rg(T1)rg(T1+T2)rg(T_2)-rg(T_1)\leq rg(T_1+T_2). Combining the two inequalities we conclude that rg(T1)rg(T2)rg(T1+T2)|rg(T_1)-rg(T_2)|\leq rg(T_1+T_2).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment