∣∣(a2−1)bacaadab(b2−1)cbdbacbc(c2−1)dcadbdcd(d2−1)∣∣=0 using Laplace method to find the determinant
∣∣a2−1baabb2−1∣∣∣∣c2−1dccdd2−1∣∣−∣∣a2−1baacbc∣∣∣∣cbbdcdd2−1∣∣+∣∣a2−1baadbd∣∣∣∣cbdbc2−1dc∣∣+∣∣abb2−1acbc∣∣∣∣cadacdd2−1∣∣−∣∣abb2−1adbd∣∣∣∣cadac2−1dc∣∣+∣∣acbcadbd∣∣∣∣cadacbdb∣∣=0(1−(a2+b2))(1−(c2+d2))−(bc)2−(bd)2−(ac)2−(ad)2+0=01−c2−d2−a2−b2+(cb)2+(ac)2+(ad)2+(bd)2−(bc)2−(bd)2−(ac)2−(ad)2=0∴1=a2+b2+c2+d2a2+b2+c2+d2=1
Comments