Use GAUSS-JORDAN INVERSE METHOD to solve these systems of Linear Equations.
y-10z=-8
2х - бу=8
x+2z=7
we are given
y-10z=-8
2х - бу=8
x+2z=7
this can be rewritten as
0x+y-10z=-8
2х - бу+0z=8
x+0y+2z=7
representing above equations in matrix form, we have
"\\begin{pmatrix}\n 0 & 1&-10 \\\\\n 2& -6&0\\\\\n1&0&2\n\\end{pmatrix}" "\\begin{pmatrix}\n x \\\\\n y\\\\\nz\n\\end{pmatrix}" ="\\begin{pmatrix}\n -8 \\\\\n 8\\\\\n7\n\\end{pmatrix}"
let A="\\begin{pmatrix}\n 0 & 1&-10 \\\\\n 2& -6&0\\\\\n1&0&2\n\\end{pmatrix}" and b= "\\begin{pmatrix}\n -8 \\\\\n 8\\\\\n7\n\\end{pmatrix}" and X="\\begin{pmatrix}\nx\\\\\n y\\\\\nz\n\\end{pmatrix}"
find inverse of matrix A using GAUSS-JORDAN INVERSE METHOD by reducing the following matrix to row echelon form
= "\\begin{pmatrix}\n 0 & 1&-10 \\mid&1&0&0\\\\\n 2& -6& 0 \\mid&0&1&0\\\\\n1&0&2 \\mid&0&0&1\n\\end{pmatrix}"
"R_1\\leftrightarrow R_3"
= "\\begin{pmatrix}\n 1&0&2 \\mid&0&0&1\\\\\n 2& -6& 0 \\mid&0&1&0\\\\\n0 & 1&-10 \\mid&1&0&0\n\\end{pmatrix}"
"R_2\\to R_2-2R_1"
="\\begin{pmatrix}\n 1&0&2 \\mid&0&0&1\\\\\n 0& -6& -4\\mid&0&1&-2\\\\\n0 & 1&-10 \\mid&1&0&0\n\\end{pmatrix}"
"R_2 \\to- {1\\over 6}R_2"
"R_3 \\to 6R_3 +R_2"
="\\begin{pmatrix}\n 1&0&2 \\mid&0&0&1\\\\\n 0& 1& {4\\over 6}\\mid&0&-{1\\over 6}&{2\\over 6}\\\\\n0 &0&-64 \\mid&6&1&-2\n\\end{pmatrix}"
"R_3 \\to -{1\\over 64}R_3"
="\\begin{pmatrix}\n 1&0&2 \\mid&0&0&1\\\\\n 0& 1& {4\\over 6}\\mid&0&-{1\\over 6}&{2\\over 6}\\\\\n0 &0&1 \\mid&-{6\\over 64}&-{1\\over 64}&{2\\over 64}\n\\end{pmatrix}"
"R_2 \\to R_2-{4\\over 6}R_3"
"R_1 \\to R_1-2R_3"
="\\begin{pmatrix}\n 1&0&0 \\mid&{12\\over 64}&{2\\over 64}&{15\\over 16}\\\\\n 0& 1& 0\\mid&{4\\over 64}&-{5\\over 32}&{5\\over1 6}\\\\\n0 &0&1 \\mid&-{6\\over 64}&-{1\\over 64}&{2\\over 64}\n\\end{pmatrix}"
"\\implies" "A^{-1}" = "\\begin{pmatrix}\n {12\\over 64}&{2\\over 64}&{15\\over 16}\\\\\n {4\\over 64}&-{5\\over 32}&{5\\over 16}\\\\\n-{6\\over 64}&-{1\\over 64}&{2\\over 64}\n\\end{pmatrix}"
A-1AX=A-1b
"\\begin{pmatrix}\n {12\\over 64}&{2\\over 64}&{15\\over 16}\\\\\n {4\\over 64}&-{5\\over 32}&{5\\over 16}\\\\\n-{6\\over 64}&-{1\\over 64}&{2\\over 64}\n\\end{pmatrix}" "\\begin{pmatrix}\n 0 & 1&-10 \\\\\n 2& -6&0\\\\\n1&0&2\n\\end{pmatrix}" "\\begin{pmatrix}\nx\\\\\n y\\\\\nz\n\\end{pmatrix}" ="\\begin{pmatrix}\n {12\\over 64}&{2\\over 64}&{15\\over 16}\\\\\n {4\\over 64}&-{5\\over 32}&{5\\over 16}\\\\\n-{6\\over 64}&-{1\\over 64}&{2\\over 64}\n\\end{pmatrix}" "\\begin{pmatrix}\n -8 \\\\\n 8\\\\\n7\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1& 0&0 \\\\\n 0& 1&0\\\\\n0&0&1\n\\end{pmatrix}" "\\begin{pmatrix}\nx\\\\\n y\\\\\nz\n\\end{pmatrix}" ="\\begin{pmatrix}\n5.31250\\\\\n 0.43750\\\\\n0.84375\n\\end{pmatrix}"
"\\therefore" "x=5.31250"
"y=0.43750"
"z=0.84375"
Comments
Leave a comment