Question #207182

Use GAUSS-JORDAN INVERSE METHOD to solve these systems of Linear Equations.

y-10z=-8

2х - бу=8

x+2z=7



1
Expert's answer
2021-06-18T12:14:32-0400

we are given

y-10z=-8

2х - бу=8

x+2z=7

this can be rewritten as

0x+y-10z=-8

2х - бу+0z=8

x+0y+2z=7

representing above equations in matrix form, we have

(0110260102)\begin{pmatrix} 0 & 1&-10 \\ 2& -6&0\\ 1&0&2 \end{pmatrix} (xyz)\begin{pmatrix} x \\ y\\ z \end{pmatrix} =(887)\begin{pmatrix} -8 \\ 8\\ 7 \end{pmatrix}

let A=(0110260102)\begin{pmatrix} 0 & 1&-10 \\ 2& -6&0\\ 1&0&2 \end{pmatrix} and b= (887)\begin{pmatrix} -8 \\ 8\\ 7 \end{pmatrix} and X=(xyz)\begin{pmatrix} x\\ y\\ z \end{pmatrix}

find inverse of matrix A using GAUSS-JORDAN INVERSE METHOD by reducing the following matrix to row echelon form

= (0110100260010102001)\begin{pmatrix} 0 & 1&-10 \mid&1&0&0\\ 2& -6& 0 \mid&0&1&0\\ 1&0&2 \mid&0&0&1 \end{pmatrix}

R1R3R_1\leftrightarrow R_3

= (1020012600100110100)\begin{pmatrix} 1&0&2 \mid&0&0&1\\ 2& -6& 0 \mid&0&1&0\\ 0 & 1&-10 \mid&1&0&0 \end{pmatrix}

R2R22R1R_2\to R_2-2R_1

=(1020010640120110100)\begin{pmatrix} 1&0&2 \mid&0&0&1\\ 0& -6& -4\mid&0&1&-2\\ 0 & 1&-10 \mid&1&0&0 \end{pmatrix}

R216R2R_2 \to- {1\over 6}R_2

R36R3+R2R_3 \to 6R_3 +R_2

=(1020010146016260064612)\begin{pmatrix} 1&0&2 \mid&0&0&1\\ 0& 1& {4\over 6}\mid&0&-{1\over 6}&{2\over 6}\\ 0 &0&-64 \mid&6&1&-2 \end{pmatrix}

R3164R3R_3 \to -{1\over 64}R_3

=(102001014601626001664164264)\begin{pmatrix} 1&0&2 \mid&0&0&1\\ 0& 1& {4\over 6}\mid&0&-{1\over 6}&{2\over 6}\\ 0 &0&1 \mid&-{6\over 64}&-{1\over 64}&{2\over 64} \end{pmatrix}

R2R246R3R_2 \to R_2-{4\over 6}R_3

R1R12R3R_1 \to R_1-2R_3


=(10012642641516010464532516001664164264)\begin{pmatrix} 1&0&0 \mid&{12\over 64}&{2\over 64}&{15\over 16}\\ 0& 1& 0\mid&{4\over 64}&-{5\over 32}&{5\over1 6}\\ 0 &0&1 \mid&-{6\over 64}&-{1\over 64}&{2\over 64} \end{pmatrix}


    \implies A1A^{-1} = (12642641516464532516664164264)\begin{pmatrix} {12\over 64}&{2\over 64}&{15\over 16}\\ {4\over 64}&-{5\over 32}&{5\over 16}\\ -{6\over 64}&-{1\over 64}&{2\over 64} \end{pmatrix}


A-1AX=A-1b


(12642641516464532516664164264)\begin{pmatrix} {12\over 64}&{2\over 64}&{15\over 16}\\ {4\over 64}&-{5\over 32}&{5\over 16}\\ -{6\over 64}&-{1\over 64}&{2\over 64} \end{pmatrix} (0110260102)\begin{pmatrix} 0 & 1&-10 \\ 2& -6&0\\ 1&0&2 \end{pmatrix} (xyz)\begin{pmatrix} x\\ y\\ z \end{pmatrix} =(12642641516464532516664164264)\begin{pmatrix} {12\over 64}&{2\over 64}&{15\over 16}\\ {4\over 64}&-{5\over 32}&{5\over 16}\\ -{6\over 64}&-{1\over 64}&{2\over 64} \end{pmatrix} (887)\begin{pmatrix} -8 \\ 8\\ 7 \end{pmatrix}


(100010001)\begin{pmatrix} 1& 0&0 \\ 0& 1&0\\ 0&0&1 \end{pmatrix} (xyz)\begin{pmatrix} x\\ y\\ z \end{pmatrix} =(5.312500.437500.84375)\begin{pmatrix} 5.31250\\ 0.43750\\ 0.84375 \end{pmatrix}



\therefore x=5.31250x=5.31250

y=0.43750y=0.43750

z=0.84375z=0.84375










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS