a)
"\\det A=\\begin{vmatrix}\n 3 & 0 \\\\\n 5 & 9\n\\end{vmatrix}=3(9)-0(5)=27\\not=0" "=>A^{-1}\\ exists"
"A^{-1}=\\dfrac{1}{27}\\begin{pmatrix}\n 9 & 0 \\\\\n -5 & 3\n\\end{pmatrix}=\\begin{pmatrix}\n 1\/3 & 0 \\\\\n -5\/27 & 1\/9\n\\end{pmatrix}"
b)
"\\det A=\\begin{vmatrix}\n -3 & 7 & 9 \\\\\n 1 & 1 & 3 \\\\\n 4 & 9 & 3 \\\\\n\\end{vmatrix}=-3\\begin{vmatrix}\n 1 & 3 \\\\\n 9 & 3\n\\end{vmatrix}-7\\begin{vmatrix}\n 1 & 3\\\\\n 4 & 3\n\\end{vmatrix}+9\\begin{vmatrix}\n 1 & 1 \\\\\n 4 & 9\n\\end{vmatrix}"
"=-3(3-27)-7(3-12)+9(9-4)=180\\not=0" "=>A^{-1}\\ exists"
To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be the inverse matrix.
"\\begin{pmatrix}\n -3 & 7 & 9 & & 1 & 0 & 0 \\\\\n 1 & 1 & 3 & & 0 & 1 & 0 \\\\\n 4 & 9 & 3 & & 0 & 0 & 1 \\\\\n\\end{pmatrix}" "R_1=-R_1\/3"
"\\begin{pmatrix}\n 1 & -7\/3 & -3 & & -1\/3 & 0 & 0 \\\\\n 1 & 1 & 3 & & 0 & 1 & 0 \\\\\n 4 & 9 & 3 & & 0 & 0 & 1 \\\\\n\\end{pmatrix}""R_2=R_2-R_1"
"\\begin{pmatrix}\n 1 & -7\/3 & -3 & & -1\/3 & 0 & 0 \\\\\n 0 & 10\/3 & 6 & & 1\/3 & 1 & 0 \\\\\n 4 & 9 & 3 & & 0 & 0 & 1 \\\\\n\\end{pmatrix}" "R_3=R_3-4R_1"
"\\begin{pmatrix}\n 1 & -7\/3 & -3 & & -1\/3 & 0 & 0 \\\\\n 0 & 10\/3 & 6 & & 1\/3 & 1 & 0 \\\\\n 0 & 55\/3 & 15 & & 4\/3 & 0 & 1 \\\\\n\\end{pmatrix}" "R_2=(3\/10)R_2"
"\\begin{pmatrix}\n 1 & -7\/3 & -3 & & -1\/3 & 0 & 0 \\\\\n 0 & 1 & 9\/5 & & 1\/10 & 3\/10 & 0 \\\\\n 0 & 55\/3 & 15 & & 4\/3 & 0 & 1 \\\\\n\\end{pmatrix}" "R_1=R_1+(7\/3)R_2"
"\\begin{pmatrix}\n 1 & 0 & 6\/5 & & -1\/10 & 7\/10 & 0 \\\\\n 0 & 1 & 9\/5 & & 1\/10 & 3\/10 & 0 \\\\\n 0 & 55\/3 & 15 & & 4\/3 & 0 & 1 \\\\\n\\end{pmatrix}""R_3=R_3-(55\/3)R_2"
"\\begin{pmatrix}\n 1 & 0 & 6\/5 & & -1\/10 & 7\/10 & 0 \\\\\n 0 & 1 & 9\/5 & & 1\/10 & 3\/10 & 0 \\\\\n 0 & 0 & -18 & & -1\/2 & -11\/2 & 1 \\\\\n\\end{pmatrix}" "R_3=-R_3\/18"
"\\begin{pmatrix}\n 1 & 0 & 6\/5 & & -1\/10 & 7\/10 & 0 \\\\\n 0 & 1 & 9\/5 & & 1\/10 & 3\/10 & 0 \\\\\n 0 & 0 & 1 & & 1\/36 & 11\/36 & -1\/18 \\\\\n\\end{pmatrix}" "R_1=R_1-(6\/5)R_3"
"\\begin{pmatrix}\n 1 & 0 & 0 & & -2\/15 & 1\/3 & 1\/15 \\\\\n 0 & 1 & 9\/5 & & 1\/10 & 3\/10 & 0 \\\\\n 0 & 0 & 1 & & 1\/36 & 11\/36 & -1\/18 \\\\\n\\end{pmatrix}" "R_2=R_2-(9\/5)R_3"
"\\begin{pmatrix}\n 1 & 0 & 0 & & -2\/15 & 1\/3 & 1\/15 \\\\\n 0 & 1 & 0 & & 1\/20 & -1\/4 & 1\/10 \\\\\n 0 & 0 & 1 & & 1\/36 & 11\/36 & -1\/18 \\\\\n\\end{pmatrix}" On the left is the identity matrix. On the right is the inverse matrix.
"A^{-1}=\\begin{pmatrix}\n -2\/15 & 1\/3 & 1\/15 \\\\\n 1\/20 & -1\/4 & 1\/10 \\\\\n 1\/36 & 11\/36 & -1\/18 \\\\\n\\end{pmatrix}"
Comments
Leave a comment