Question #206225

Check whether T(x1,x2,x3)=(x1+x2/x3,x3) define linear transformation from R3 to R2


1
Expert's answer
2021-06-14T17:57:34-0400

Let us check whether T(x1,x2,x3)=(x1+x2x3,x3)T(x_1,x_2,x_3)=(x_1+\frac{x_2}{x_3},x_3) define a linear transformation from R3\R^3 to R2.\R^2.

Taking into account that

T(x1,x2,x3)+T(y1,y2,y3)=(x1+x2x3,x3)+(y1+y2y3,y3)=(x1+y1+x2x3+y2y3,x3+y3)T(x_1,x_2,x_3)+T(y_1,y_2,y_3)=(x_1+\frac{x_2}{x_3},x_3)+(y_1+\frac{y_2}{y_3},y_3)=(x_1+y_1+\frac{x_2}{x_3}+\frac{y_2}{y_3},x_3+y_3)

and T(x1+y1,x2+y2,x3+y3)=(x1+y1+x2+y2x3+y3,x3+y3)T(x1,x2,x3)+T(y1,y2,y3),T(x_1+y_1,x_2+y_2,x_3+y_3)=(x_1+y_1+\frac{x_2+y_2}{x_3+y_3},x_3+y_3)\ne T(x_1,x_2,x_3)+T(y_1,y_2,y_3),

we conclude that T(x1,x2,x3)=(x1+x2x3,x3)T(x_1,x_2,x_3)=(x_1+\frac{x_2}{x_3},x_3) does not define a linear transformation from R3\R^3 to R2.\R^2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS