Answer to Question #206992 in Linear Algebra for Rohan Kumar

Question #206992

Let V be the vector space of all 2×2 matrices over the field R. let W1 = {[xxyz]\begin{bmatrix} x & -x \\ y & z \end{bmatrix}| x,y,z€R} and W2= {[abac]\begin{bmatrix} a & b \\ -a & c \end{bmatrix}| a,b,c€R}. What is the dimensions of W1+W2 and W1 intersection W2 as well?


1
Expert's answer
2021-06-17T19:17:18-0400

W1={[xxyz]x,y,z,R}W_1 =\{\begin{bmatrix} x & -x \\ y & z \end{bmatrix}| x,y,z,\in R\}

Basis W1W_1 , for example,

E1=[1100],E2=[0010],E3=[0001]E_1=\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, E_2=\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_3=\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}

dimW1=3dimW_1=3


W2={[abac]a,b,c,R}W_2 =\{\begin{bmatrix} a & b \\ -a & c \end{bmatrix}| a,b,c,\in R\}

Basis W2W_2 , for example,

E1=[1010],E2=[0100],E3=[0001]E'_1=\begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, E'_2=\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}, E'_3=\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}

dimW2=3dimW_2=3


W1+W2:a1E1+a2E2+a3E3+a4E1+a5E2=0[a1+a4a1+a5a2a4a3]=[0000]W_1+W_2:\\ a_1E_1+a_2E_2+a_3E_3+a_4E'_1+a_5E'_2=0\\ \begin{bmatrix} a_1+a_4 & -a_1+a_5\\ a_2-a_4 & a_3 \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

a1+a4=0a1+a5=0a2a4=0a3=0a_1+a_4=0\\ -a_1+a_5=0\\ a_2-a_4=0\\ a_3=0


a4=a1a5=a1a2=a4=a1a3=0a_4=-a_1\\ a_5=a_1\\ a_2=a_4=-a_1\\ a_3=0

dim(W1+W2)=5dim(W1W2)=dimW1+dimW2dim(W1+W2)=3+35=1dim(W_1+W_2)=5\\ dim(W_1\cap W_2)=dimW_1+dimW_2-\\ -dim(W_1+W_2)=3+3-5=1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment