Use GAUSS-JORDAN INVERSE METHOD to solve these system of Linear Equations.
y-10z=-8
2x-6y=8
x+2z=7
Let us use Gauss-Jordan method to solve the following system of linear equations:
"\\begin{cases}y-10z=-8 \\\\ 2x-6y=8 \\\\ x+2z=7\\end{cases}."
"\\left(\\begin{array}{ccc|c} 0 & 1 & -10 & -8\\\\ 2 & -6 & 0 & 8 \\\\ 1 & 0 & 2 & 7\\end{array}\\right)" ~ "\\left(\\begin{array}{ccc|c} 1 & 0 & 2 & 7 \\\\ 0 & 1 & -10 & -8\\\\ 2 & -6 & 0 & 8 \\end{array}\\right)" ~ "\\Big|-2R_1+R_3\\Big|" ~
"\\left(\\begin{array}{ccc|c} 1 & 0 & 2 & 7 \\\\ 0 & 1 & -10 & -8\\\\ 0 & -6 & -4 & -6 \\end{array}\\right)" ~ "\\Big|6R_2+R_3\\Big|" ~ "\\left(\\begin{array}{ccc|c} 1 & 0 & 2 & 7 \\\\ 0 & 1 & -10 & -8\\\\ 0 & 0 & -64 & -54 \\end{array}\\right)" ~
"\\Big|-\\frac{1}{64}R_3\\Big|" ~ "\\left(\\begin{array}{ccc|c} 1 & 0 & 2 & 7 \\\\ 0 & 1 & -10 & -8\\\\ 0 & 0 & 1 & 27\/32 \\end{array}\\right)" ~ "\\Big|R_1-2R_3,R_2+10R_3\\Big|" ~
"\\left(\\begin{array}{ccc|c} 1 & 0 & 0 & 85\/16 \\\\ 0 & 1 & 0& 7\/16\\\\ 0 & 0 & 1 & 27\/32 \\end{array}\\right)."
It follows that "x=\\frac{85}{16}, \\ y = \\frac{7}{16}, \\ z = \\frac{27}{32}."
Comments
Leave a comment