Let us use Gauss-Jordan method to solve the following system of linear equations:
{ y − 10 z = − 8 2 x − 6 y = 8 x + 2 z = 7 . \begin{cases}y-10z=-8 \\ 2x-6y=8 \\ x+2z=7\end{cases}. ⎩ ⎨ ⎧ y − 10 z = − 8 2 x − 6 y = 8 x + 2 z = 7 .
( 0 1 − 10 − 8 2 − 6 0 8 1 0 2 7 ) \left(\begin{array}{ccc|c} 0 & 1 & -10 & -8\\ 2 & -6 & 0 & 8 \\ 1 & 0 & 2 & 7\end{array}\right) ⎝ ⎛ 0 2 1 1 − 6 0 − 10 0 2 − 8 8 7 ⎠ ⎞ ~ ( 1 0 2 7 0 1 − 10 − 8 2 − 6 0 8 ) \left(\begin{array}{ccc|c} 1 & 0 & 2 & 7 \\ 0 & 1 & -10 & -8\\ 2 & -6 & 0 & 8 \end{array}\right) ⎝ ⎛ 1 0 2 0 1 − 6 2 − 10 0 7 − 8 8 ⎠ ⎞ ~ ∣ − 2 R 1 + R 3 ∣ \Big|-2R_1+R_3\Big| ∣ ∣ − 2 R 1 + R 3 ∣ ∣ ~
( 1 0 2 7 0 1 − 10 − 8 0 − 6 − 4 − 6 ) \left(\begin{array}{ccc|c} 1 & 0 & 2 & 7 \\ 0 & 1 & -10 & -8\\ 0 & -6 & -4 & -6 \end{array}\right) ⎝ ⎛ 1 0 0 0 1 − 6 2 − 10 − 4 7 − 8 − 6 ⎠ ⎞ ~ ∣ 6 R 2 + R 3 ∣ \Big|6R_2+R_3\Big| ∣ ∣ 6 R 2 + R 3 ∣ ∣ ~ ( 1 0 2 7 0 1 − 10 − 8 0 0 − 64 − 54 ) \left(\begin{array}{ccc|c} 1 & 0 & 2 & 7 \\ 0 & 1 & -10 & -8\\ 0 & 0 & -64 & -54 \end{array}\right) ⎝ ⎛ 1 0 0 0 1 0 2 − 10 − 64 7 − 8 − 54 ⎠ ⎞ ~
∣ − 1 64 R 3 ∣ \Big|-\frac{1}{64}R_3\Big| ∣ ∣ − 64 1 R 3 ∣ ∣ ~ ( 1 0 2 7 0 1 − 10 − 8 0 0 1 27 / 32 ) \left(\begin{array}{ccc|c} 1 & 0 & 2 & 7 \\ 0 & 1 & -10 & -8\\ 0 & 0 & 1 & 27/32 \end{array}\right) ⎝ ⎛ 1 0 0 0 1 0 2 − 10 1 7 − 8 27/32 ⎠ ⎞ ~ ∣ R 1 − 2 R 3 , R 2 + 10 R 3 ∣ \Big|R_1-2R_3,R_2+10R_3\Big| ∣ ∣ R 1 − 2 R 3 , R 2 + 10 R 3 ∣ ∣ ~
( 1 0 0 85 / 16 0 1 0 7 / 16 0 0 1 27 / 32 ) . \left(\begin{array}{ccc|c} 1 & 0 & 0 & 85/16 \\ 0 & 1 & 0& 7/16\\ 0 & 0 & 1 & 27/32 \end{array}\right). ⎝ ⎛ 1 0 0 0 1 0 0 0 1 85/16 7/16 27/32 ⎠ ⎞ .
It follows that x = 85 16 , y = 7 16 , z = 27 32 . x=\frac{85}{16}, \ y = \frac{7}{16}, \ z = \frac{27}{32}. x = 16 85 , y = 16 7 , z = 32 27 .
Comments