State Cramer’s rule. Show graphically how a system of two equations in
two unknowns has:
(i) no solution, (ii) a unique, (iii) infinitely many solutions.
Cramer’s rule:
The solution of the simultaneous equations
{a1x+b1y=d1a2x+b2y=d2\begin{cases} a_1x+b_1y=d_1 \\ a_2x+b_2y=d_2 \end{cases}{a1x+b1y=d1a2x+b2y=d2
is given by the formulae
x=∣d1b1d2b2∣∣a1b1a2b2∣x=\frac{\begin{vmatrix} d_1 & b_1 \\ d_2 & b_2 \end{vmatrix} }{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}x=∣∣a1a2b1b2∣∣∣∣d1d2b1b2∣∣ y=∣a1d1a2d2∣∣a1b1a2b2∣y=\frac{\begin{vmatrix} a_1 & d_1 \\ a_2 & d_2 \end{vmatrix} }{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}y=∣∣a1a2b1b2∣∣∣∣a1a2d1d2∣∣
(i) {x−y=0x−y=1\begin{cases} x-y=0 \\ x-y=1 \end{cases}{x−y=0x−y=1
This system has no solution.
ii){x−y=0x+y=0\begin{cases} x-y=0 \\ x+y=0 \end{cases}{x−y=0x+y=0
This system has a unique solution.
(iii) {x−y=12x−2y=2\begin{cases} x-y=1 \\ 2x-2y=2 \end{cases}{x−y=12x−2y=2
This system has infinitely many solutions.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments