. Find the solution of the linear system using Gauss-Jordan elimination
π£ + 2π€ β 2π₯ β π¦ = 0
2π£ + 3π€ β 5π₯ + π¦ β 7π§ = 0
π€ + π₯ β π¦ + π§ = 0
βπ£ + π€ + 5π₯ β π¦ = 0
Solution.
"\ud835\udc63 + 2\ud835\udc64 \u2212 2\ud835\udc65 \u2212 \ud835\udc66 = 0"
"2\ud835\udc63 + 3\ud835\udc64 \u2212 5\ud835\udc65 + \ud835\udc66 \u2212 7\ud835\udc67 = 0"
"\ud835\udc64 + \ud835\udc65 \u2212 \ud835\udc66 + \ud835\udc67 = 0"
"\u2212\ud835\udc63 + \ud835\udc64 + 5\ud835\udc65 \u2212 \ud835\udc66 = 0"
"\\begin{bmatrix}\n 1 & 2&-2&-1&0&0 \\\\\n 2 & 3&-5&1&-7&0\\\\\n 0&1&1&-1&1&0\\\\\n -1&1&5&-1&0&0\n\\end{bmatrix}"
Find the pivot in the 1st column in the 1st row
"\\begin{bmatrix}\n 1 & 2&-2&-1&0&0 \\\\\n 2 & 3&-5&1&-7&0\\\\\n 0&1&1&-1&1&0\\\\\n -1&1&5&-1&0&0\n\\end{bmatrix}"
Eliminate the 1st column
"\\begin{bmatrix}\n 1 & 2&-2&-1&0&0 \\\\\n 0 & -1&-1&3&-7&0\\\\\n 0&1&1&-1&1&0\\\\\n 0&3&3&-2&0&0\n\\end{bmatrix}"
Find the pivot in the 2nd column in the 2nd row (inversing the sign in the whole row)
"\\begin{bmatrix}\n 1 & 2&-2&-1&0&0 \\\\\n 0 & 1&1&-3&7&0\\\\\n 0&1&1&-1&1&0\\\\\n 0&3&3&-2&0&0\n\\end{bmatrix}"
Eliminate the 2nd column
"\\begin{bmatrix}\n 1 & 0&-4&5&-14&0 \\\\\n 0 & 1&1&-3&7&0\\\\\n 0&0&0&2&-6&0\\\\\n 0&0&0&7&-21&0\n\\end{bmatrix}"
Make the pivot in the 4th column by dividing the 3rd row by 2
"\\begin{bmatrix}\n 1 & 0&-4&5&-14&0 \\\\\n 0 & 1&1&-3&7&0\\\\\n 0&0&0&1&-3&0\\\\\n 0&0&0&7&-21&0\n\\end{bmatrix}"
Eliminate the 4th column
"\\begin{bmatrix}\n 1 & 0&-4&0&1&0 \\\\\n 0 & 1&1&0&-2&0\\\\\n 0&0&0&1&-3&0\\\\\n 0&0&0&0&0&0\n\\end{bmatrix}"
Solution set:
"v = 4x - z;\nw = - x + 2z;\ny = 3z;\n\nx, z - free."
Answer: "v = 4x - z;\nw = - x + 2z;\ny = 3z;\n\nx, z - free."
Comments
Leave a comment