Question #176398

. Find the solution of the linear system using Gauss-Jordan elimination

𝑣 + 2𝑤 − 2𝑥 − 𝑦 = 0

2𝑣 + 3𝑤 − 5𝑥 + 𝑦 − 7𝑧 = 0

𝑤 + 𝑥 − 𝑦 + 𝑧 = 0

−𝑣 + 𝑤 + 5𝑥 − 𝑦 = 0




1
Expert's answer
2021-04-14T12:51:49-0400

Solution.

𝑣+2𝑤2𝑥𝑦=0𝑣 + 2𝑤 − 2𝑥 − 𝑦 = 0

2𝑣+3𝑤5𝑥+𝑦7𝑧=02𝑣 + 3𝑤 − 5𝑥 + 𝑦 − 7𝑧 = 0

𝑤+𝑥𝑦+𝑧=0𝑤 + 𝑥 − 𝑦 + 𝑧 = 0

𝑣+𝑤+5𝑥𝑦=0−𝑣 + 𝑤 + 5𝑥 − 𝑦 = 0


[122100235170011110115100]\begin{bmatrix} 1 & 2&-2&-1&0&0 \\ 2 & 3&-5&1&-7&0\\ 0&1&1&-1&1&0\\ -1&1&5&-1&0&0 \end{bmatrix}

Find the pivot in the 1st column in the 1st row

[122100235170011110115100]\begin{bmatrix} 1 & 2&-2&-1&0&0 \\ 2 & 3&-5&1&-7&0\\ 0&1&1&-1&1&0\\ -1&1&5&-1&0&0 \end{bmatrix}

Eliminate the 1st column

[122100011370011110033200]\begin{bmatrix} 1 & 2&-2&-1&0&0 \\ 0 & -1&-1&3&-7&0\\ 0&1&1&-1&1&0\\ 0&3&3&-2&0&0 \end{bmatrix}

Find the pivot in the 2nd column in the 2nd row (inversing the sign in the whole row)

[122100011370011110033200]\begin{bmatrix} 1 & 2&-2&-1&0&0 \\ 0 & 1&1&-3&7&0\\ 0&1&1&-1&1&0\\ 0&3&3&-2&0&0 \end{bmatrix}

Eliminate the 2nd column

[10451400113700002600007210]\begin{bmatrix} 1 & 0&-4&5&-14&0 \\ 0 & 1&1&-3&7&0\\ 0&0&0&2&-6&0\\ 0&0&0&7&-21&0 \end{bmatrix}

Make the pivot in the 4th column by dividing the 3rd row by 2

[10451400113700001300007210]\begin{bmatrix} 1 & 0&-4&5&-14&0 \\ 0 & 1&1&-3&7&0\\ 0&0&0&1&-3&0\\ 0&0&0&7&-21&0 \end{bmatrix}

Eliminate the 4th column

[104010011020000130000000]\begin{bmatrix} 1 & 0&-4&0&1&0 \\ 0 & 1&1&0&-2&0\\ 0&0&0&1&-3&0\\ 0&0&0&0&0&0 \end{bmatrix}

Solution set:

v=4xz;w=x+2z;y=3z;x,zfree.v = 4x - z; w = - x + 2z; y = 3z; x, z - free.

Answer: v=4xz;w=x+2z;y=3z;x,zfree.v = 4x - z; w = - x + 2z; y = 3z; x, z - free.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS