Solve by finding the basis over R for the solution space.
(A) X + 3y -3z=0
2x - 3y + z=0
3x -2y + 2z=0
(B) X + Y + Z + W=0
2X + 3Y - Z +W=0
3X + 4Y +2W=0
"\\begin{pmatrix}\n 1 & 3 & -3 \\\\\n 2 & -3 & 1 \\\\\n 3 & -2 & 2\n\\end{pmatrix}\n\\begin{pmatrix}\nx\\\\\ny\\\\\nz\n\\end{pmatrix}\n=\n\\begin{pmatrix}\n0\\\\\n0\\\\\n0\n\\end{pmatrix}"
Performing row operations on the matrix, we have
"\\begin{pmatrix}\n1 & 3 & -3\\\\\n2&-3&1\\\\\n3&-2&2\n\\end{pmatrix}\n\\to^{R_{21}(-2)}_{R_{31}(-3)}\n\\begin{pmatrix}\n1&3&-3\\\\\n0&-9&7\\\\\n0&-11&11\n\\end{pmatrix}"
"\\to R_2(\\frac{-1}{9})\n\\begin{pmatrix}\n1&3&-3\\\\\n0&1&\\frac{-7}{9}\\\\\n0&-11&11\n\\end{pmatrix}\n\\to^{R_{32}(11)}\n\\begin{pmatrix}\n1&3&-3\\\\\n0&1&\\frac{-7}{9}\\\\\n0&0&\\frac{22}{9}\n\\end{pmatrix}"
"\\to R_3(\\frac{9}{22})\n\\begin{pmatrix}\n1&3&-3\\\\\n0&1&\\frac{-7}{9}\\\\\n0&0&1\n\\end{pmatrix}"
"x+3y-3z=0\\\\\ny-\\frac{7}{9}z = 0\\\\\nz=0"
Therefore x=0,y=0, z=0. This is a trivial solution hence it is not a basis
Question B
"\\begin{pmatrix} 1&1&1&1\\\\ 2&3&-1&1\\\\ 3&4&0&2 \\end{pmatrix} \\begin{pmatrix} x\\\\y\\\\z\\\\w \\end{pmatrix} = \\begin{pmatrix} 0\\\\0 \\\\ 0 \\end{pmatrix}"
The matrix of the coefficient is
"\\begin{pmatrix} 1&1&1&1\\\\ 2&3&-1&1\\\\ 3&4&0&2 \\end{pmatrix} \\to^{R_{21}(-2)}_{R_{31}(-3)} \\begin{pmatrix} 1&1&1&1\\\\ 0&1&-3&-1\\\\ 0&1&-3&-1\\end{pmatrix} \\to^{R_{32}(-1)} \\begin{pmatrix} 1&1&1&1\\\\ 0&1&-3&-1\\\\ 0&0&0&0\\end{pmatrix}"
"x+y+z+w=0\\\\ y-3z-w=0"
Let "z=a, w=b" where "a,b \\in \\mathbb{R}"
So, we have
"y-3a-b=0 \\\\ y = 3a+b \\\\ x = -y-z-w \\\\ x= -(3a+b) -a-b \\\\ x= -4a-2b\\\\ \\therefore x = -4a-2b, y = 3a+b , z =a, w=b \\\\ (x,y,z,w) = a(-4,3,1,0)+b(-2,1,0,1)"
So a basis for the system is {(-4,3,1,0),(-2,1,0,1)}
Comments
Leave a comment