Check whether or not the matrix
A = ( 1 2 3 0 2 3 0 0 3 ) A=\begin{pmatrix}
1 & 2 &3\\
0 &2&3\\0 &0&3
\end{pmatrix} A = ⎝ ⎛ 1 0 0 2 2 0 3 3 3 ⎠ ⎞
Is diagonalisable. If it is find a matrix P so that P^-1AP is a diagonal matrix. If A is not diagonalisable, obtain its minimal polynomial.
find the charateristics polynomial
f ( λ ) = d e t ( A − λ I ) = 0 f(\lambda) =det(A-\lambda\Iota)=0 f ( λ ) = d e t ( A − λ I ) = 0
∣ 1 − λ 2 3 0 2 − λ 3 0 0 3 − λ ∣ = ( 1 − λ ) [ ( 2 − λ ) ( 3 − λ ) ] = 0 \begin{vmatrix}
1-\lambda & 2 &3\\
0 &2-\lambda&3\\0 &0&3-\lambda
\end{vmatrix} = (1-\lambda)[(2-\lambda)(3-\lambda)]=0 ∣ ∣ 1 − λ 0 0 2 2 − λ 0 3 3 3 − λ ∣ ∣ = ( 1 − λ ) [( 2 − λ ) ( 3 − λ )] = 0
λ = 1 , λ − 2 , λ = 3 \lambda=1 , \lambda-2, \lambda=3 λ = 1 , λ − 2 , λ = 3
since we have three eigen values, then the matrix is diagonalisable
when λ = 1 \lambda=1 λ = 1
( 0 2 3 0 1 3 0 0 2 ) ( x 1 x 2 x 3 ) = 0 \begin{pmatrix}
0 & 2 &3\\
0 &1&3\\0 &0&2
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2\\x_3
\end{pmatrix}=0 ⎝ ⎛ 0 0 0 2 1 0 3 3 2 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = 0
x 2 + 3 x 3 = 0...... ( i ) x_2 +3x_3=0......(i) x 2 + 3 x 3 = 0...... ( i )
x 2 + 3 x 3 = 0....... ( i i ) x_2+3x_3=0.......(ii) x 2 + 3 x 3 = 0....... ( ii )
x 3 = 0 x_3=0 x 3 = 0
⟹ x 1 = x 2 = x 3 = 0 \implies x_1=x_2=x_3=0 ⟹ x 1 = x 2 = x 3 = 0
when λ = 2 \lambda=2 λ = 2
( − 1 2 3 0 0 3 0 0 1 ) ( x 1 x 2 x 3 ) = 0 \begin{pmatrix}
-1 & 2 &3\\
0 &0&3\\0 &0&1
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2\\x_3
\end{pmatrix}=0 ⎝ ⎛ − 1 0 0 2 0 0 3 3 1 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = 0
− x 1 + 2 x 2 + 3 x 3 = 0 -x_1+2x_2+3x_3=0 − x 1 + 2 x 2 + 3 x 3 = 0
x 3 = 0 x_3 =0 x 3 = 0
since x 3 = 0 ⟹ 2 x 2 = x 1 x_3=0\implies 2x_2=x_1 x 3 = 0 ⟹ 2 x 2 = x 1
since there is no restriction placed on x1
x1 =r(arbitrary) where can be any number
let r=2
then x1 = 2
x2 = 1
when λ = 3 \lambda=3 λ = 3
( − 2 2 3 0 − 1 3 0 0 0 ) ( x 1 x 2 x 3 ) = 0 \begin{pmatrix}
-2 & 2 &3\\
0 &-1&3\\0 &0&0
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2\\x_3
\end{pmatrix}=0 ⎝ ⎛ − 2 0 0 2 − 1 0 3 3 0 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = 0
bringing out the augmented matrix
( − 2 2 3 0 0 − 1 3 0 0 0 0 0 ) R 1 ↦ R 1 − R 2 \begin{pmatrix}
-2 & 2 &3&0\\
0 &-1&3&0\\0 &0&0&0
\end{pmatrix}R_1\mapsto R_1-R_2 ⎝ ⎛ − 2 0 0 2 − 1 0 3 3 0 0 0 0 ⎠ ⎞ R 1 ↦ R 1 − R 2 ( − 2 3 0 0 0 − 1 3 0 0 0 0 0 ) \begin{pmatrix}
-2 &3&0&0\\
0 &-1&3&0\\0 &0&0&0
\end{pmatrix} ⎝ ⎛ − 2 0 0 3 − 1 0 0 3 0 0 0 0 ⎠ ⎞
∴ − 2 x 1 + 3 x 2 = 0 ⟹ x 1 = 3 2 x 2 \therefore -2x_1+3x_2=0\implies x_1={3 \over 2}x_2 ∴ − 2 x 1 + 3 x 2 = 0 ⟹ x 1 = 2 3 x 2
− 1 x 2 + 4 x 3 = 0 ⟹ x 2 = 4 x 3 -1x_2 +4x_3=0\implies x_2 =4x_3 − 1 x 2 + 4 x 3 = 0 ⟹ x 2 = 4 x 3
since there is no restriction placed on x1
x2 =s (arbitrary) where can be any number
let s=2
then x1 = 3
x3 = 1 2 {1 \over 2} 2 1
Matrix P =( 0 2 3 0 1 2 0 0 1 2 ) \begin{pmatrix}
0 & 2 &3\\
0 & 1&2 \\0&0&{1 \over 2}
\end{pmatrix} ⎝ ⎛ 0 0 0 2 1 0 3 2 2 1 ⎠ ⎞
Comments