Question #160246

Check whether or not the matrix

A=[1 2 3]

[0 2 3]

[0 0 3]

Is diagonalisable. If it is find a matrix P so that P^-1AP is a diagonal matrix. If A is not diagonalisable, obtain its minimal polynomial.





1
Expert's answer
2021-02-03T03:25:31-0500

Check whether or not the matrix


A=(123023003)A=\begin{pmatrix} 1 & 2 &3\\ 0 &2&3\\0 &0&3 \end{pmatrix}

Is diagonalisable. If it is find a matrix P so that P^-1AP is a diagonal matrix. If A is not diagonalisable, obtain its minimal polynomial.

find the charateristics polynomial


f(λ)=det(AλI)=0f(\lambda) =det(A-\lambda\Iota)=0

1λ2302λ3003λ=(1λ)[(2λ)(3λ)]=0\begin{vmatrix} 1-\lambda & 2 &3\\ 0 &2-\lambda&3\\0 &0&3-\lambda \end{vmatrix} = (1-\lambda)[(2-\lambda)(3-\lambda)]=0

λ=1,λ2,λ=3\lambda=1 , \lambda-2, \lambda=3


since we have three eigen values, then the matrix is diagonalisable

when λ=1\lambda=1

(023013002)(x1x2x3)=0\begin{pmatrix} 0 & 2 &3\\ 0 &1&3\\0 &0&2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2\\x_3 \end{pmatrix}=0


x2+3x3=0......(i)x_2 +3x_3=0......(i)

x2+3x3=0.......(ii)x_2+3x_3=0.......(ii)

x3=0x_3=0

    x1=x2=x3=0\implies x_1=x_2=x_3=0


when λ=2\lambda=2

(123003001)(x1x2x3)=0\begin{pmatrix} -1 & 2 &3\\ 0 &0&3\\0 &0&1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2\\x_3 \end{pmatrix}=0


x1+2x2+3x3=0-x_1+2x_2+3x_3=0

x3=0x_3 =0

since x3=0    2x2=x1x_3=0\implies 2x_2=x_1

since there is no restriction placed on x1

x1=r(arbitrary) where can be any number

let r=2

then x1 = 2

x2 = 1


when λ=3\lambda=3

(223013000)(x1x2x3)=0\begin{pmatrix} -2 & 2 &3\\ 0 &-1&3\\0 &0&0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2\\x_3 \end{pmatrix}=0


bringing out the augmented matrix


(223001300000)R1R1R2\begin{pmatrix} -2 & 2 &3&0\\ 0 &-1&3&0\\0 &0&0&0 \end{pmatrix}R_1\mapsto R_1-R_2 (230001300000)\begin{pmatrix} -2 &3&0&0\\ 0 &-1&3&0\\0 &0&0&0 \end{pmatrix}


2x1+3x2=0    x1=32x2\therefore -2x_1+3x_2=0\implies x_1={3 \over 2}x_2


1x2+4x3=0    x2=4x3-1x_2 +4x_3=0\implies x_2 =4x_3


since there is no restriction placed on x1

x2=s (arbitrary) where can be any number

let s=2

then x1 = 3


x3 = 12{1 \over 2}


Matrix P =(0230120012)\begin{pmatrix} 0 & 2 &3\\ 0 & 1&2 \\0&0&{1 \over 2} \end{pmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS