Question #160244

Obtain a solution set for the linear system

x1-2x2-3x3=0

-2x1+4x2+6x3=0

X1+2x2-5=0


1
Expert's answer
2021-02-04T01:39:57-0500

Obtain a solution set for the linear system

x1 - 2x2 - 3x3=0

-2x1+4x2+6x3=0

X1+2x2-5x3=0


(123246125)\begin{pmatrix} 1 & -2 &-3\\-2 &4 &6\\1 &2 &-5 \end{pmatrix} (x1x2x3)=(000)\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\0 \end{pmatrix}


(123024601250)R32R3+R2\begin{pmatrix} 1 & -2 &-3&| &0\\-2 &4 &6&|&0\\1 &2 &-5&|&0 \end{pmatrix}R_3 \mapsto2R_3 +R_2 (123024600840)\begin{pmatrix} 1 & -2 &-3&| &0\\-2 &4 &6&|&0\\0 &8 &-4&|&0 \end{pmatrix}



(123024600840)R2R2+2R1\begin{pmatrix} 1 & -2 &-3&| &0\\-2 &4 &6&|&0\\0 &8 &-4&|&0 \end{pmatrix} R_2 \mapsto R_2 +2R_1 (123000000840)\begin{pmatrix} 1 & -2 &-3&| &0\\0 &0 &0&|&0\\0 &8 &-4&|&0 \end{pmatrix}


x12x23x3=0........(i)x_1-2x_2-3x_3=0........(i)


8x24x3=0..........................(ii)8x_2-4x_3=0..........................(ii)

from equation (ii)

8x2=4x3    x3=2x28x_2=4x_3 \implies x_3=2x_2

we can view as determining x3 in term of x2 , with no restriction placed on x2 a all

x2x_2 =α\alpha (arbitrary i.e. α\alpha can be any number)

then x3=2αx_3=2\alpha


put x2 and x3 into eqn(i)

x12(α)3(2α)=0x_1-2(\alpha)-3(2\alpha)=0


x1=8αx_1=8\alpha

\because the linear system contains one free parameter


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS