Obtain a solution set for the linear system
x1 - 2x2 - 3x3 =0
-2x1 +4x2 +6x3 =0
X1 +2x2 -5x3 =0
( 1 − 2 − 3 − 2 4 6 1 2 − 5 ) \begin{pmatrix}
1 & -2 &-3\\-2 &4 &6\\1 &2 &-5
\end{pmatrix} ⎝ ⎛ 1 − 2 1 − 2 4 2 − 3 6 − 5 ⎠ ⎞ ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix}
x_1 \\
x_2 \\ x_3
\end{pmatrix}=\begin{pmatrix}
0 \\
0 \\0
\end{pmatrix} ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ 0 0 0 ⎠ ⎞
( 1 − 2 − 3 ∣ 0 − 2 4 6 ∣ 0 1 2 − 5 ∣ 0 ) R 3 ↦ 2 R 3 + R 2 \begin{pmatrix}
1 & -2 &-3&| &0\\-2 &4 &6&|&0\\1 &2 &-5&|&0
\end{pmatrix}R_3
\mapsto2R_3 +R_2 ⎝ ⎛ 1 − 2 1 − 2 4 2 − 3 6 − 5 ∣ ∣ ∣ 0 0 0 ⎠ ⎞ R 3 ↦ 2 R 3 + R 2 ( 1 − 2 − 3 ∣ 0 − 2 4 6 ∣ 0 0 8 − 4 ∣ 0 ) \begin{pmatrix}
1 & -2 &-3&| &0\\-2 &4 &6&|&0\\0 &8 &-4&|&0
\end{pmatrix} ⎝ ⎛ 1 − 2 0 − 2 4 8 − 3 6 − 4 ∣ ∣ ∣ 0 0 0 ⎠ ⎞
( 1 − 2 − 3 ∣ 0 − 2 4 6 ∣ 0 0 8 − 4 ∣ 0 ) R 2 ↦ R 2 + 2 R 1 \begin{pmatrix}
1 & -2 &-3&| &0\\-2 &4 &6&|&0\\0 &8 &-4&|&0
\end{pmatrix} R_2 \mapsto R_2 +2R_1 ⎝ ⎛ 1 − 2 0 − 2 4 8 − 3 6 − 4 ∣ ∣ ∣ 0 0 0 ⎠ ⎞ R 2 ↦ R 2 + 2 R 1 ( 1 − 2 − 3 ∣ 0 0 0 0 ∣ 0 0 8 − 4 ∣ 0 ) \begin{pmatrix}
1 & -2 &-3&| &0\\0 &0 &0&|&0\\0 &8 &-4&|&0
\end{pmatrix} ⎝ ⎛ 1 0 0 − 2 0 8 − 3 0 − 4 ∣ ∣ ∣ 0 0 0 ⎠ ⎞
x 1 − 2 x 2 − 3 x 3 = 0........ ( i ) x_1-2x_2-3x_3=0........(i) x 1 − 2 x 2 − 3 x 3 = 0........ ( i )
8 x 2 − 4 x 3 = 0.......................... ( i i ) 8x_2-4x_3=0..........................(ii) 8 x 2 − 4 x 3 = 0.......................... ( ii )
from equation (ii)
8 x 2 = 4 x 3 ⟹ x 3 = 2 x 2 8x_2=4x_3 \implies x_3=2x_2 8 x 2 = 4 x 3 ⟹ x 3 = 2 x 2
we can view as determining x3 in term of x2 , with no restriction placed on x2 a all
x 2 x_2 x 2 =α \alpha α (arbitrary i.e. α \alpha α can be any number)
then x 3 = 2 α x_3=2\alpha x 3 = 2 α
put x2 and x3 into eqn(i)
x 1 − 2 ( α ) − 3 ( 2 α ) = 0 x_1-2(\alpha)-3(2\alpha)=0 x 1 − 2 ( α ) − 3 ( 2 α ) = 0
x 1 = 8 α x_1=8\alpha x 1 = 8 α
∵ \because ∵ the linear system contains one free parameter
Comments