Obtain a solution set for the linear system
x1 - 2x2 - 3x3=0
-2x1+4x2+6x3=0
X1+2x2-5x3=0
⎝⎛1−21−242−36−5⎠⎞ ⎝⎛x1x2x3⎠⎞=⎝⎛000⎠⎞
⎝⎛1−21−242−36−5∣∣∣000⎠⎞R3↦2R3+R2 ⎝⎛1−20−248−36−4∣∣∣000⎠⎞
⎝⎛1−20−248−36−4∣∣∣000⎠⎞R2↦R2+2R1 ⎝⎛100−208−30−4∣∣∣000⎠⎞
x1−2x2−3x3=0........(i)
8x2−4x3=0..........................(ii)
from equation (ii)
8x2=4x3⟹x3=2x2
we can view as determining x3 in term of x2 , with no restriction placed on x2 a all
x2 =α (arbitrary i.e. α can be any number)
then x3=2α
put x2 and x3 into eqn(i)
x1−2(α)−3(2α)=0
x1=8α
∵ the linear system contains one free parameter
Comments