Find the orthogonal canonical reduction of the quadratic form
"Q=x^2+y^2+z^2-2xy-2xz-2yz"The quadratic form can be expressed in matrix notation as
The characteristic equation of the matrix "A" is
"(1-\\lambda)\\begin{vmatrix}\n 1-\\lambda & -1 \\\\\n -1 & 1-\\lambda\n\\end{vmatrix}-(-1)\\begin{vmatrix}\n -1 & -1 \\\\\n -1 & 1-\\lambda\n\\end{vmatrix}+""(-1)\\begin{vmatrix}\n -1 & 1-\\lambda \\\\\n -1& -1\n\\end{vmatrix}=0"
"(1-\\lambda)((1-\\lambda)^2-1)+(-1+\\lambda-1)-(1+1-\\lambda)=0"
"(1-\\lambda)(1-2\\lambda+\\lambda^2-1)+\\lambda-2-2+\\lambda=0"
"\\lambda(1-\\lambda)(\\lambda-2)+2(\\lambda-2)=0"
"-(\\lambda-2)(\\lambda^2-\\lambda-2)=0"
"(\\lambda-2)(\\lambda+1)(\\lambda-2)=0"
"\\lambda_1=\\lambda_2=2, \\lambda_3=-1" are eigenvalues.
"Q=2x'^2+2y'^2-z'^2" is the orthogonal canonical reduction.
"\\lambda=2: \\begin{pmatrix}\n 1-\\lambda & -1 & -1 \\\\\n -1 & 1-\\lambda & -1 \\\\\n -1 & -1 & 1-\\lambda\n\\end{pmatrix}=\\begin{pmatrix}\n -1 & -1 & -1 \\\\\n -1 & -1 & -1 \\\\\n -1 & -1 & -1\n\\end{pmatrix}"
Perform row operations to obtain the rref of the matrix:
"R_2=R_2-R_1: \\begin{pmatrix}\n -1 & -1 & -1 \\\\\n 0 & 0 & 0 \\\\\n -1 & -1 & -1\n\\end{pmatrix}"
"R_3=R_3-R_1: \\begin{pmatrix}\n -1 & -1 & -1 \\\\\n 0 & 0 & 0 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"
"R_1=-1\\cdot R_1: \\begin{pmatrix}\n 1 & 1 & 1 \\\\\n 0 & 0 & 0 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"
Now, solve the matrix equation
If we take "v_2=t, v_3=s," then "v_1=-t-s, v_2=t, v_3=s"
Therefore
"\\lambda=-1: \\begin{pmatrix}\n 1-\\lambda & -1 & -1 \\\\\n -1 & 1-\\lambda & -1 \\\\\n -1 & -1 & 1-\\lambda\n\\end{pmatrix}=\\begin{pmatrix}\n 2 & -1 & -1 \\\\\n -1 & 2 & -1 \\\\\n -1 & -1 & 2\n\\end{pmatrix}"
Perform row operations to obtain the rref of the matrix:
"R_1=R_1\/2: \\begin{pmatrix}\n 1 & -1\/2 & -1\/2 \\\\\n -1 & 2 & -1 \\\\\n -1 & -1 & 2\n\\end{pmatrix}"
"R_2=R_2+R_1: \\begin{pmatrix}\n 1 & -1\/2 & -1\/2 \\\\\n 0 & 3\/2 & -3\/2 \\\\\n -1 & -1 & 2\n\\end{pmatrix}"
"R_3=R_3+R_1: \\begin{pmatrix}\n 1 & -1\/2 & -1\/2 \\\\\n 0 & 3\/2 & -3\/2 \\\\\n 0 & -3\/2 & 3\/2\n\\end{pmatrix}"
"R_3=R_3+R_2: \\begin{pmatrix}\n 1 & -1\/2 & -1\/2 \\\\\n 0 & 3\/2 & -3\/2 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"
"R_2=(2\/3)R_2: \\begin{pmatrix}\n 1 & -1\/2 & -1\/2 \\\\\n 0 & 1 & -1 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"
"R_1=R_1+(1\/2)R_2: \\begin{pmatrix}\n 1 & 0 & -1 \\\\\n 0 & 1 & -1 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"
Now, solve the matrix equation
If we take "v_3=0," then "v_1=t,v_2=t,v_3=t."
"\\sqrt {(-1)^2+1^2+0^2}=\\sqrt{2}"
"\\sqrt {(-1)^2+0^2+1^2}=\\sqrt{2}"
"\\sqrt {1^2+1^2+1^2}=\\sqrt{3}"
"p_1={1 \\over \\sqrt{2}}\\begin{pmatrix}\n -1 \\\\\n 1 \\\\\n 0\n\\end{pmatrix},p_2={1 \\over \\sqrt{2}}\\begin{pmatrix}\n -1 \\\\\n 0 \\\\\n 1\n\\end{pmatrix},p_3={1 \\over \\sqrt{3}}\\begin{pmatrix}\n 1 \\\\\n 1 \\\\\n 1\n\\end{pmatrix}" are the principal axes.
"P=\\begin{pmatrix}\n -{1 \\over \\sqrt{2}} & -{1 \\over \\sqrt{2}} & {1 \\over \\sqrt{3}} \\\\\n {1 \\over \\sqrt{2}} & 0 & {1 \\over \\sqrt{3}} \\\\\n 0 & {1 \\over \\sqrt{2}} & {1 \\over \\sqrt{3}}\n\\end{pmatrix}"
Thus, a substitution "\\bold x=P\\bold x'" that eliminates the cross product terms is
This produces the new quadratic form
"Q=\\bold x'^T(P^TAP)\\bold x'="
"=\\begin{pmatrix}\n x' & y' & z'\n\\end{pmatrix}^T\\begin{pmatrix}\n 2 & 0 & 0 \\\\\n 0 & 2 & 0 \\\\\n 0 & 0 & -1\n\\end{pmatrix}\\begin{pmatrix}\n x' \\\\\n y' \\\\\n z' \n\\end{pmatrix}="
"=2x'^2+2y'^2-z'^2"
in which there are no cross product terms.
"Q=2x'^2+2y'^2-z'^2" is the orthogonal canonical reduction.
Comments
Leave a comment