Question #102077
Find the orthogonal canonical reduction of the quadratic form
1
Expert's answer
2020-02-07T12:17:29-0500

Find the orthogonal canonical reduction of the quadratic form

Q=x2+y2+z22xy2xz2yzQ=x^2+y^2+z^2-2xy-2xz-2yz


The quadratic form can be expressed in matrix notation as


Q=xTAx=(xyz)T(111111111)(xyz)Q=\bold x^TA\bold x=\begin{pmatrix} x & y & z \end{pmatrix}^T\begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}\begin{pmatrix} x \\ y \\ z \end{pmatrix}

The characteristic equation of the matrix AA is


1λ1111λ1111λ=0\begin{vmatrix} 1-\lambda & -1 & -1 \\ -1 & 1-\lambda & -1 \\ -1 & -1 & 1-\lambda \end{vmatrix}=0

(1λ)1λ111λ(1)1111λ+(1-\lambda)\begin{vmatrix} 1-\lambda & -1 \\ -1 & 1-\lambda \end{vmatrix}-(-1)\begin{vmatrix} -1 & -1 \\ -1 & 1-\lambda \end{vmatrix}+(1)11λ11=0(-1)\begin{vmatrix} -1 & 1-\lambda \\ -1& -1 \end{vmatrix}=0


(1λ)((1λ)21)+(1+λ1)(1+1λ)=0(1-\lambda)((1-\lambda)^2-1)+(-1+\lambda-1)-(1+1-\lambda)=0

(1λ)(12λ+λ21)+λ22+λ=0(1-\lambda)(1-2\lambda+\lambda^2-1)+\lambda-2-2+\lambda=0

λ(1λ)(λ2)+2(λ2)=0\lambda(1-\lambda)(\lambda-2)+2(\lambda-2)=0

(λ2)(λ2λ2)=0-(\lambda-2)(\lambda^2-\lambda-2)=0

(λ2)(λ+1)(λ2)=0(\lambda-2)(\lambda+1)(\lambda-2)=0


λ1=λ2=2,λ3=1\lambda_1=\lambda_2=2, \lambda_3=-1 are eigenvalues.

Q=2x2+2y2z2Q=2x'^2+2y'^2-z'^2 is the orthogonal canonical reduction.


λ=2:(1λ1111λ1111λ)=(111111111)\lambda=2: \begin{pmatrix} 1-\lambda & -1 & -1 \\ -1 & 1-\lambda & -1 \\ -1 & -1 & 1-\lambda \end{pmatrix}=\begin{pmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & -1 \end{pmatrix}

Perform row operations to obtain the rref of the matrix:

R2=R2R1:(111000111)R_2=R_2-R_1: \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix}

R3=R3R1:(111000000)R_3=R_3-R_1: \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}

R1=1R1:(111000000)R_1=-1\cdot R_1: \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}

Now, solve the matrix equation


(111000000)(v1v2v3)=(000)\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}

If we take v2=t,v3=s,v_2=t, v_3=s, then v1=ts,v2=t,v3=sv_1=-t-s, v_2=t, v_3=s

Therefore


v=(tsts)=(110)t+(101)s\bold v=\begin{pmatrix} -t-s \\ t \\ s \end{pmatrix}=\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}t+\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}s

λ=1:(1λ1111λ1111λ)=(211121112)\lambda=-1: \begin{pmatrix} 1-\lambda & -1 & -1 \\ -1 & 1-\lambda & -1 \\ -1 & -1 & 1-\lambda \end{pmatrix}=\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}

Perform row operations to obtain the rref of the matrix:

R1=R1/2:(11/21/2121112)R_1=R_1/2: \begin{pmatrix} 1 & -1/2 & -1/2 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}

R2=R2+R1:(11/21/203/23/2112)R_2=R_2+R_1: \begin{pmatrix} 1 & -1/2 & -1/2 \\ 0 & 3/2 & -3/2 \\ -1 & -1 & 2 \end{pmatrix}

R3=R3+R1:(11/21/203/23/203/23/2)R_3=R_3+R_1: \begin{pmatrix} 1 & -1/2 & -1/2 \\ 0 & 3/2 & -3/2 \\ 0 & -3/2 & 3/2 \end{pmatrix}

R3=R3+R2:(11/21/203/23/2000)R_3=R_3+R_2: \begin{pmatrix} 1 & -1/2 & -1/2 \\ 0 & 3/2 & -3/2 \\ 0 & 0 & 0 \end{pmatrix}

R2=(2/3)R2:(11/21/2011000)R_2=(2/3)R_2: \begin{pmatrix} 1 & -1/2 & -1/2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}

R1=R1+(1/2)R2:(101011000)R_1=R_1+(1/2)R_2: \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}

Now, solve the matrix equation


(101011000)(v1v2v3)=(000)\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}

If we take v3=0,v_3=0, then v1=t,v2=t,v3=t.v_1=t,v_2=t,v_3=t.


v=(ttt)=(111)t\bold v=\begin{pmatrix} t \\ t \\ t \end{pmatrix}=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}t

(1)2+12+02=2\sqrt {(-1)^2+1^2+0^2}=\sqrt{2}

(1)2+02+12=2\sqrt {(-1)^2+0^2+1^2}=\sqrt{2}

12+12+12=3\sqrt {1^2+1^2+1^2}=\sqrt{3}

p1=12(110),p2=12(101),p3=13(111)p_1={1 \over \sqrt{2}}\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix},p_2={1 \over \sqrt{2}}\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix},p_3={1 \over \sqrt{3}}\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} are the principal axes.

P=(1212131201301213)P=\begin{pmatrix} -{1 \over \sqrt{2}} & -{1 \over \sqrt{2}} & {1 \over \sqrt{3}} \\ {1 \over \sqrt{2}} & 0 & {1 \over \sqrt{3}} \\ 0 & {1 \over \sqrt{2}} & {1 \over \sqrt{3}} \end{pmatrix}

Thus, a substitution x=Px\bold x=P\bold x' that eliminates the cross product terms is


(xyz)=(1212131201301213)(xyz)\begin{pmatrix} x \\ y \\ z \end{pmatrix}=\begin{pmatrix} -{1 \over \sqrt{2}} & -{1 \over \sqrt{2}} & {1 \over \sqrt{3}} \\ {1 \over \sqrt{2}} & 0 & {1 \over \sqrt{3}} \\ 0 & {1 \over \sqrt{2}} & {1 \over \sqrt{3}} \end{pmatrix}\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}

This produces the new quadratic form

Q=xT(PTAP)x=Q=\bold x'^T(P^TAP)\bold x'=

=(xyz)T(200020001)(xyz)==\begin{pmatrix} x' & y' & z' \end{pmatrix}^T\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}=

=2x2+2y2z2=2x'^2+2y'^2-z'^2

in which there are no cross product terms.


Q=2x2+2y2z2Q=2x'^2+2y'^2-z'^2 is the orthogonal canonical reduction.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS