ABCD is a square and P, Q are the midpoints of BC, CD respectively. If AP = a and AQ = b, find in terms of a and b, the directed line segments (i) AB, (ii) AD, (iii) BD and (iv) AC.
To find AB and AD we have to make some equations. First let us sign BP = x, AD = 2x, QD = y, AB = 2y. From the triangle ABP and from triangle AQD we can write two equations using the Pythagoras Theorem:
"4y^2+x^2=a^2"
"4x^2+y^2=b^2"
"x^2=a^2\u22124y^2"
"4(a^2\u22124y^2)+y^2=b^2"
"4a^2\u221216y^2+y^2=b^2"
"4a^2\u221215y^2=b^2"
"y^2=(4a^2\u2212b^2)\/15"
"y=\\sqrt{(4a^2\u2212b^2)\/15} ; 2y=2\\sqrt{(4a^2\u2212b^2)\/15}"
"x^2=a^2\u22124(4a^2\u2212b^2)\/15"
"x^2=(15a^2\u221216a^2+4b^2)\/15"
"x^2=(4b^2\u2212a^2)\/15"
"x=\\sqrt{(4b^2\u2212a^2)\/15} ; 2x=2\\sqrt{(4b^2\u2212a^2)\/15}"
So "AB=2y=2\\sqrt{(4a^2\u2212b^2)\/15}"
"AD=2x=2\\sqrt{(4b^2\u2212a^2)\/15}"
From the triangle ABD we can find BD using the Pythagoras Theorem:
"BD=AC=2\\sqrt{(4a^2\u2212b^2)\/15+(4b^2\u2212a^2)\/15}="
"=2\\sqrt{(4a^2\u2212b^2+4b^2\u2212a^2)\/15}=2\\sqrt{(3a^2+3b^2)\/15}=2\\sqrt{(a^2+b^2)\/5}"
Comments
Leave a comment