"\\displaystyle\\textsf{Joining a smaller cicular cone on the top,}\\\\\n\\textsf{we have a complete triangle}\\\\\n\\frac{h_1}{r_1} = \\frac{h_1 + h_2}{r_2}\\\\\n\\textsf{By the law of similar traingles}\\\\\n\nh_1 \\,\\, \\textsf{is the height of the smaller cone}\\\\\n\nh_2\\,\\, \\textsf{is the height of the larger cone}\\\\\n\n\nr_2 = 3 r_1 \\\\\n\n\n\\frac{h_1}{r_1} = \\frac{h_1 + h_2}{3 r_1}\\\\\n\n\\frac{h_1}{r_1} = \\frac{h_1 + 3}{3 r_1}\\\\\n\nh_1 = \\frac{h_1 + 3}{3}\\\\\n\n3h_1 = h_1 + 3 \\\\\n\n2h_1 = 3, h_1 = \\frac{3}{2}\\\\\n\n\\begin{aligned}\nV &= \\pi \\left({r_2}^2\\left(\\frac{3}{2} + 3\\right) - {r_1}^2\\times\\frac{3}{2}\\right) = 52\\pi\\\\\n\\\\&=\\pi \\left(9{r_1}^2\\left(\\frac{3}{2} + 3\\right) - {r_1}^2\\times\\frac{3}{2}\\right) = 52\\pi\\\\\n\\end{aligned}\\\\\n\n9{r_1}^2\\left(\\frac{3}{2} + 3\\right) - {r_1}^2\\times\\frac{3}{2} = 52\\\\\n\n9{r_1}^2\\cdot\\frac{9}{2} - {r_1}^2\\times\\frac{3}{2} = 52\\\\\n\n\n\\frac{81{r_1}^2}{2} - \\frac{3{r_1}^2}{2} = 52\\\\\n\n\\frac{78{r_1}^2}{2} = 52\\\\\n\n\\frac{78{r_1}^2}{2} = 52\\\\\n\n39{r_1}^2 = 52\\\\\n\n{r_1}^2 = \\frac{4}{3}\\\\\n\n\nr_1 = \\frac{2}{\\sqrt{3}}\\\\\n\n\\therefore\\textsf{The upper radius is}\\,\\, \\frac{2}{\\sqrt{3}}\\,\\textsf{cm}\\\\\n\n\\textsf{Slant height of the larger cone is}\\, =\\sqrt{{r_2}^2 + (h_1 + h_2)^2}\\\\\n\n\\textsf{Slant height of the smaller cone is}\\, =\\sqrt{{r_1}^2 + {h_1}^2}\\\\\n\n\n\\begin{aligned}\n\\textsf{Slant height of the larger cone is}\\, &= \\sqrt{\\left(3\\times\\frac{2}{\\sqrt{3}}\\right)^2 + \\left(\\frac{9}{2}\\right)^2}\\\\\n\\\\&=\\sqrt{12 + \\left(\\frac{9}{2}\\right)^2} = \\sqrt{12 + \\frac{81}{4}}\n\\\\&= \\sqrt{\\frac{48 + 81}{4}} = \\sqrt{\\frac{129}{4}} = \\frac{\\sqrt{129}}{2}\n\\end{aligned}\\\\\n\n\n\\begin{aligned}\n\\textsf{Slant height of the smaller cone is}\\, &= \\sqrt{\\frac{4}{3} + \\left(\\frac{3}{2}\\right)^2}\\\\\n\\\\& = \\sqrt{\\frac{4}{3} + \\frac{9}{4}} = \\sqrt{\\frac{16 + 27}{12}} \n\\\\&= \\sqrt{\\frac{43}{12}} = \\frac{\\sqrt{43}}{2\\sqrt{3}}\n\\end{aligned}\\\\\n\n\n\\begin{aligned}\n\\therefore \\textsf{The slant height of the frustum is}\\, &= \\frac{\\sqrt{129}}{2} - \\frac{\\sqrt{43}}{2\\sqrt{3}}\n\\\\&= \\frac{\\sqrt{129}}{2} - \\frac{\\sqrt{129}}{6} = \\frac{\\sqrt{129}}{3}\n\\end{aligned}\\\\\n\n\n\\therefore \\textsf{The slant height of the frustum is}\\,\\, \\frac{\\sqrt{129}}{3}\\,\\textsf{cm}"
Comments
Leave a comment