Question #124936

Given a soda can with a volume of 15 and a diameter of 2, what is the volume of a cone that fits perfectly inside the soda can? (Hint: only enter whole numbers in the answer blank). Numerical Answers Expected


1
Expert's answer
2020-07-06T17:31:11-0400
Let’s imagine how a cone can be locatedto occupy the maximum volume.  Their bases and heights must be equal.Let’s write the known volume formulasand calculate the answerVcylinder=Sh    h=VcylinderSVcone=13Sh=13SVcylinderSVcone=13SVcylinderS=13VcylinderVcone=1315=5\textnormal{Let's imagine how a cone can be located} \\ \textnormal{to occupy the maximum volume. } \\ \textnormal{ Their bases and heights must be equal.} \\ \textnormal{Let's write the known volume formulas} \\ \textnormal{and calculate the answer} \\ V_{cylinder} = S * h \implies h = \frac {V_{cylinder}} {S} \\ V_{cone} = \frac{1}{3}*S*h=\frac{1}{3}*S*\frac {V_{cylinder}} {S} \\ V_{cone} = \frac{1}{3}*\cancel{S}*\frac {V_{cylinder}} {\cancel{S}} = \frac{1}{3}*V_{cylinder} \\ V_{cone} = \frac{1}{3}*15=5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS